

NOAA Technical Memorandum NMFS F/NWC-35

An Atlas of Demersal Fish and Invertebrate Community Structure in the Eastern Bering Sea: Part 1, 1978-81

by Gary E. Walters and Michael J. McPhail

September 1982

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information, and have not received complete formal review, editorial control, or detailed editing.

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

AN ATLAS OF DEMERSAL FISH AND INVERTEBRATE COMMUNITY STRUCTURE IN THE EASTERN BERING SEA:

PART 1, 1978-81

by

Gary E. Walters and Michael J. McPhail

Resource Assessment and Conservation Engineering Division Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

September 1982

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This report presents the results of using numerical classification, i.e., "cluster analysis," techniques to investigate some of the qualitative characteristics of demersal fish and invertebrate community structure in the eastern Bering Sea. Summer trawl survey data from the 4 years, 1978-81, were used to examine relationships between species, describe apparent habitat areas, and measure the extent of interannual variability.

Following a description of general analytical steps and their sequence, the manner of their implementation on the computer system of the Northwest and Alaska Fisheries Center is described. A package of four computer programs written in FORTRAN has been developed to prepare data for cluster analysis, to perform the clustering, to produce geographic maps, and to draw summary dendrograms.

The results-that are presented for each of the four trawl surveys include a dendrogram summarizing the grouping relationships between all sampling locations (i.e., sites); maps of these site groups at three levels of dissimilarity; lists of the assemblages of species occurring within these various site groups (i.e., habitat areas) and their relative abundance; and a dendrogram summarizing the relationships between species, based on similarity of distribution patterns.

The resultant site groups reveal highly contiguous distributions with considerable temporal stability.

ii

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

Page

INTRODUCTION
METHODS
Cluster Analyses
Data Used for Analyses. 12 Survey Coverage and Characteristics 12 Biological Species. 13 Analytical Procedures 17
RESULTS
Bering Sea Survey, 1978
DISCUSSION
ACKNOWLEDGMENTS
REFERENCES
APPENDICES
Appendix A. Species Assemblages, 1978 Bering Sea Survey 55
Appendix B. Species Assemblages, 1979 Bering Sea Survey 73
Appendix C. Species Assemblages, 1980 Bering Sea Survey 97
Appendix D. Species Assemblages, 1981 Bering Sea Survey 111

THIS PAGE INTENTIONALLY LEFT BLANK

INTRODUCTION

The need for better understanding of the structure and dynamics of ecosystems becomes increasingly apparent as we attempt to' facilitate the goals of multispecies management. Although communities of fishes and their associated organisms are complex, they can be described in terms of certain dimensions or characteristics. These include the species list of the community, the relative abundance and co-occurrence of species in space and time; the distributional statistics of the species populations; the behavior and physiology of the component species; and the feeding relationships, trophic levels and efficiencies, and -energy flow (Fager 1963; May 1979).

Most conventional fisheries statistics and analyses provide only suggestions of community organization. For example, specieswhich may have important roles within a system, due to competitive or predator-prey interactions, may not appear in commercial catch statistics. Similarly, species lists from research surveys indicate which species were present but provide little information on associations.

Even after defining the dimensions and characteristics listed above, it can be quite difficult to distinguish the different geographical boundaries of system structure from the complex overlaps of the individual species distributions: what are the important biological habitats, where are the boundaries that indicate system structure, and how do the locations of these vary over time?

Temporal variability is a particularly important aspect of community structure, though often ignored (Wiens 1981), and is a critical consideration for multispecies management due to the different time scales for many population processes (May et al. 1979). For example, a potentially important source of seasonal variation is environmentally-induced population migration.

The eastern Bering Sea supports large multispecies fisheries, both foreign and domestic (Bakkala et al. 1981; Otto 1981). In recent years, 1970-78, foreigntrawl fisheries have harvested approximately 1,713,00 metric tons (t) of groundfish per year, taking about 24 marketable species. In addition, domestic fisheries now harvest 150,000-200,000 t/yr of crab. Because of the mixed-species catches that occur in these fisheries and growing awareness of interactions between different fisheries and species, it has become increasingly important to study and describe the multispecies system upon which these large fisheries are based.

There have been only a few previous studies of the organization of demersal fish and invertebrate communities in the eastern Bering Sea. Descriptions of the major infaunal and epifaunal invertebrate communities have included those of Semenov (1964), Stoker (1981), Haflinger (19811, and Jewett and Feder (1981). Previous descriptions of Bering Sea demersal fish and macroinvertebrate communities have included Kihara (1976), Pereyra et al. (1976), and Smith and Bakkala (1982).

The hydrography of the eastern Bering Sea shelf plays a major role in the biological organization of the system (Favorite and Laevastu 1981). The shelf is marked by highly variable ice cover over a considerable portion of the year. Frontal systems, with variability in position and strength, are the result of distinct water mass domains across the shelf (Kinder and Schumacher 1981). These domains may have different environmental conditions for the fauna within-them and almost certainly affect the geographic boundaries of community distributions (Haflinger 1981; Cooney 1981).

Since 1971, the Northwest and Alaska Fisheries Center (NWAFC) has conducted annual resource assessment trawl surveys in the eastern Bering Sea. These standard research surveys, usually conducted from June to August of each

year, are now a valuable time series that can be used to study the Bering Sea demersal fish and invertebrate system, and the variations from year to year.

The objectives of the present study are, using the four most recent sets of NWAFC trawl survey data from the years 1978-81, to describe the Bering Sea demersal fish and invertebrate system in terms of 1) the major communities, their component species and associations; 2) the large-scale geographic patterns of community organization; and 3) the variations in these characteristics over successive years.

This report also provides an opportunity to describe the numerical classification techniques and computer programs that were used to conduct these multispecies analyses. THIS PAGE INTENTIONALLY LEFT BLANK

METHODS

The data and computer programs used for these analyses were obtained from the fishery resource survey data-base system of the NWAFC as described by Mintel and Smith (1981). In brief, the system consists of data, software, and documentation that have been implemented on the Burroughs 7800 computer^{1/} at the NWAFC for handling the requirements of multiple, large-scale, groundfish trawl surveys. Data available for the Bering Sea region includes the results of annual resource surveys conducted by the NWAFC since 1971. This preliminary report covers only the four most recent years, 1978-81. The data-base information used in the analyses includes haul position, sampling gear, trawling distance, and catch data consisting of biological identifications, weights, and counts.

Cluster Analyses

General Methods

In recent analyses of trawl survey data from the Pacific coast and northeastern Gulf of Alaska regions, Gabriel and Tyler (1980, 1981) used numerical classification (i.e., "cluster analysis") techniques to describe the distributions of demersal fishes in terms of their associations and organization into different species assemblages; Advantages of these techniques were that they: 1) could be used to reduce large sets of data to simpler summaries using objective criteria; 2) were based upon quantitative catch data, i.e., apparent faunal densities, instead of only presence or absence; 3) enabled evaluations of results at different levels of statistical relationship; and 4) seemed to provide valuable insights into biological associations, both between the different organisms and with their environment, that contribute to the organization of the fauna.

^{1/} Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

General methods of cluster analysis, in their application to analyses of ecological survey or capture data, are now fairly well described in the literature (Clifford and Stephenson 1975; Boesch 1977). Cluster analysis is used to classify a set of entities based on the resemblance of their attributes according to mathematical criteria. Principal steps and 'their sequence are shown in Figure 1.

Data preparation involves establishing a data matrix consisting of the catch data (counts, weights, or densities) for a set of taxonomic categories (species) among a set of samples or collection sites. A transformation may be applied to the data matrix to reduce the effects of large data values that may be unduly emphasized in the results. A standardization may also be applied to correct for unequal sampling effort, such as two different sampling gears or unequal gear selectivity between species.

After the data matrix has been transformed and/or standardized, resemblance measures are determined between sites or species, resulting in a matrix of resemblance values. By convention, a "normal" numerical classification is an analysis based upon measures of resemblance between samples or collection sites., An "inverse" numerical classification is based upon the resemblance between species in terms of their distributions among samples.

Although various clustering methods are available, the most commonly used procedures are agglomerative and hierarchical (Boesch 1977). With these methods, each entity begins as a separate element. The elements are then combined in hierarchical steps based on the similarity (or dissimilarity) of their attributes. The resultant groupings, indicative of the relationships, are usually summarized in the form of a dendrogram.

It should be noted that numerical classification is not an end in itself, but a means of gaining insight into the organization of complex data and guiding subsequent research.

Figure 1. Diagram of the principal steps, and their sequence, for cluster analysis of a survey data matrix composed of catch data for m species at n sampling sites.

Computer Implementation

A package of four computer programs, written in FORTRAN, was developed by the junior author (M. M.) to perform a sequence of steps associated with cluster analyses on the NWAFC computer system. The main program, named CLUSTER, was adapted from a computer program originally written by James Keniston of Oregon State University, Newport, Oregon. The four programs, in approximate' order of use, are

- 1. CLUSTER/START,
- 2. CLUSTER,
- 3. CLUSTER/MAP, and
- 4. CLUSTER/DRAW.

Documentation for the package of four NWAFC programs is maintained on a disk file. Copies may be obtained from the authors, or NWAFC computer users can list a copy on a terminal at any time with the command

LIST (RACE0360) DOC/CLUSTER.

<u>Program CLUSTER/START</u>.--The first program in the package, CLUSTER/START, interfaces data in the NWAFC survey data-base with the main analytical program. Information that is input to CLUSTER/START includes a haul file (i.e., list of trawl samples); a catch file (i.e., the corresponding capture data); a list of species code numbers to use in the analysis; and measurement standards. Program CLUSTER/START then uses these files to create a data matrix of samples and catch per unit of effort (CPUE) values for the list of species. CPUE values can be calculated in units of either weight or number.

<u>Program CLUSTER</u>. --Program CLUSTER computes resemblance measures, performs the clustering, and reports the results of the classification in a summary table and dendrogram. An output data file which contains the clustering results can also be saved for subsequent uses with the other two programs in the cluster analysis package, CLUSTER/MAP and CLUSTER/DRAW. Program CLUSTER normally operates in an interactive mode where the user responds to program cues, entering the desired program directions. The program can also be run in "batch" mode with preset instructions. There are no limits on the number of hauls or species which may be analyzed by program CLUSTER, other than processing time and cost constraints.

Program CLUSTER takes the data matrix (generated and stored by the computer as a sequential file) from CLUSTER/START, and then allows the following steps:

- 1. transformation,
- 2. standardization,
- 3. selection of normal or inverse classification,
- 4. computation of resemblance matrix,
- 5. clustering of entities,
- 6. drawing the dendrogram of results, and
- 7. output of a dendrogram data file.

Data elements can be transformed in one of four different ways: log(x+1), ln(x+1), square root, or exponential, where x refers to the CPUE of each species in each haul.

After any transformation, the data matrix can be standardized on the basis of either row or column values. For example, if two different sampling gears were used, the CPUE of each species in each sample can be divided by the total CPUE of each sample, thereby creating a proportional CPUE. Mean or maximum value divisors may also be used as a basis for standardization.

The next step is to select either a normal or inverse classification. In a normal classification, site clustering, each haul is an entity and its attributes are the CPUE values of each species in that sample; whereas in species clustering, each species is an entity and its attributes are the CPUE values among all hauls.

Once the desired data matrix has been developed and the selection of classification method made, the entities are compared to each other and a dissimilarity matrix is formed. Two possible algorithms are provided, the Bray-Curtis and Canberra metric coefficients, both of which can range from zero (no dissimilarity) to 1 (complete dissimilarity).

For the Bray-Curtis coefficient (Clifford and Stephenson 1975), the dissimilarity between two entities j and k, with N attributes (i), is given by

$$D_{jk} = \sum_{i=1}^{N} \frac{|x_{ij} - x_{ik}|}{(x_{ij} + x_{ik})}$$

where Djk can range from zero (no dissimilarity) to 1 (total dissimilarity). For site clustering (normal classification), x_{ij} and x_{ik} are the transformed CPUE values for the ith species (of N total) at the jth and kth stations. For species clustering (inverse classification), x_{ij} and x_{ik} represent the ith station (of N total) for the jth and kth species. It should be noted that a few very large data values may heavily influence the result unless previous transformation and/or standardization was used to minimize biasing. The Bray-Curtis coefficient is widely used in marine ecological studies (Boesch 1977).

The Canberra metric coefficient (Lance and Williams 1966) for these entities is given by

$$D_{jk} = \frac{1}{N} \frac{\sum_{i=1}^{N} |x_{ij} - x_{ik}|}{\sum_{i=1}^{N} (x_{ij} + x_{ik})}$$

i=1

A detailed comparison of both coefficients is given by Clifford and Stephenson (1975).

After the dissimilarity values between entities have been established, the actual combining of entities into discrete assemblages can begin. Program CLUSTER has five possible strategies available-to determine clustering: single linkage, complete linkage, group average, simple average, and flexible linkage (see Boesch (1977) for further explanation of these procedures). All of these strategies are hierarchical and agglomerative. Each entity begins as an individual element and the most similar pair are joined first. After that, either another pair is formed, or a single entity is added to a pair that has already been formed. The way that the dissimilarity between groups is calculated is determined by the clustering strategy chosen. This process continues with larger groups being fused at increasingly higher values of dissimilarity until the entire population of entities is joined in one cluster. Differences between the various techniques and the consequences of each strategy are described by Boesch (1977) and Clifford and Stephenson (1975).

After completing the classification, program CLUSTER prints the results in a table and also as a printer-plotted dendrogram showing the entities, their grouping relationships, and levels of dissimilarity.

<u>Program CLUSTER/MAP</u>.--Program CLUSTER/MAP creates a plot work file of the hauls included in a cluster selected by the user. This program can be used to produce computer-drawn geographic maps showing the locations and distribution patterns of different site or species clusters. For site clusters, all the hauls for a given cluster are plotted. In the case of species clusters, those hauls are plotted in which any user defined proportion of the species in the cluster was captured.

<u>Program CLUSTER/DRAW</u>.--Program CLUSTER/DRAW uses dendrogram data files saved from program CLUSTER to draw dendrograms on the NWAFC's offline CalComp plotter. This program is used when high-quality line drawings are needed.

Data Used for Analyses

Survey Coverage and Characteristics

The data used for this study were collected by fisheries resource assessment surveys performed each summer, primarily during June to August, by personnel of the NWAFC's Resource Assessment and Conservation Engineering (RACE) Division. Vessels that were used included research vessels of the National Oceanic and Atmospheric Administration (NOAA) and chartered fishing vessels.

The results of each year's survey were scanned, and successful tows were selected to give as complete coverage of the area surveyed as possible. In cases where replicate tows were made at the same site, one tow was selected using a random number table. Tows were rejected if the trawl had snagged the bottom or been damaged.

For 1978, data from 245 trawl samples were used out of 316 total samples. The geographic area of the survey covered about 342,000 km² and ranged from Unimak Pass (lat. 54°20'N) to north of St. Matthew Island (lat. 61°00'N) and from Bristol Bay (long. 159°02'W) to the edge of the continental shelf. Bottom depths varied from 18-276 m. All tows were made with a 400-mesh Eastern trawl (Wathne 1977) using a 32 mm mesh cod end liner.

In 1979, 566 trawl samples were selected from 682 total samples. The survey ranged from Unimak Pass to St. Lawrence Island (lat. 63°30'N) and from inner Bristol Bay (long. 158°00'W) to the continental slope. The area covered was about 649,000 km² over a depth range of 11-732 m. A 400-mesh Eastern trawl was used for 472 hauls on the continental shelf and a Nor'eastern trawl

with roller gear (Gunderson and Sample's (1980): figures 2-4) was used for 94 hauls on the slope. Both nets used 32 mm mesh cod end liners.

The 1980 analysis used data from 345 trawl samples out of 383 total hauls. The area covered was about 467,000 km² and ranged from Unimak Pass to north of St. Matthew Island (lat. 61°40'N) and from inner Bristol Bay to the shelf edge. Depths sampled ranged from 15-243 m. The 400-mesh Eastern trawl was used for all the hauls.

In 1981, 312 trawl samples were used from 409 total samples., The survey covered about 425,000 km² over a depth range of 13-177 m. The area surveyed ranged from Unimak Pass to north of St. Matthew Island (lat. 61°38'N) and from inner Bristol Bay to the shelf edge. The 400-mesh Eastern trawl was used for 127 hauls and an 83/112 Eastern trawl (Wathne's (1977): figure 10) was used for 185 hauls. Both nets had 32 mm cod end liners.

In all 4 yr, 1978-81, the field methods described by Smith and Bakkala (1982) were used for trawl sampling and collecting biological data.

Biological Species

After the selection of hauls, the complete catch data were used to prepare a species list. Taxonomic categories were included in each year's analysis (as entities or attributes) on the basis of frequency of occurrence and the likelihood that they were identified accurately and consistently over all years (Table 1). Some species had to be grouped into higher-level polyspecific categories, i.e., taxonomic genera or families, to assure consistent classification. Taxonomic categories which appeared in less than 1% of the hauls selected for a given year (2% for 1979 due to the unusually large survey) were excluded as being too rare.

1 /		Ye	2/ ar	
Taxon	1978	1979	1980	198
sh				
Agonidae			1	
Agonus acipenserinus	x	. X	х	x
Anoplagonus inermis	х			
Aspidophoroides bartoni	х	x	х	х
Bathyagonus infraspinatus				х
B. nigripinnis	x			
Occella dodecaedron		• x	x	x
0. verrucosa	x	х	, x	
Pallasina barbata			х	
Sarritor frenatus	х	х	х	x
S. leptorhynchus			х	
Unid. agonids	х	х	x	
Ammodytidae				
Ammodytes hexapterus	x	х	x	х
Anoplopomatidae				
Anoplopoma fimbria	x	х	x	х
Bathymasteridae				
Bathymaster signatus	x	x	х	x
Unid. bathymasterids (2)	· x		-	
Clupeidae				
Clupea harengus pallasi	х	·X	×	х
Cottidae		·. ·		
Artediellus spp. (7)	x	x		
Dasycottus setiger	x	×	х	х
Gymnocanthus spp. (4)	x	х	x	х
Hemilepidotus spp. (3)	x	x	x	x
H. jordani	x	x	x	X
H. papilio		· · x	x	x
Hemitripterus bolini	x	x	×	×
Icelinus borealis	×		,	
Icelus spp. (6)	x	×	×	x
Leptocottus armatus				-
Malacocottus kincaidi	x	x	x	х
Myoxocephalus spp. (10)	×	 X	 x	x
Triglops spp. (6)	×	×	 ×	· ·
Inid cottide	v	v		л

Table 1.--List of fish and invertebrates used in the cluster analyses, 1978-81 Bering Sea surveys.

Table 1--(continued).

		Yea	ar	
Taxon	1978	1979	1980	19
Cyclopteridae				
Careproctus spp. (13)				,
C. melanurus		x		
C. rastrinus	×	х	x	
Eumicrotremus orbis	x			
Liparis spp (13)		×	×	
L dennyi	· •		x	
Unid cyclopterids	x v	. v	x	
Cadidao	A	<i></i>		
Bereegedug geide				
Eleginug gregilig		'	х 	
		X ,	×	
Gadus macrocephalus	x	x	x	
Theragra chalcogramma	· x	X	x	
Hexagrammidae				
Hexagrammos spp. (2)		х	x	
H. lagocephalus		x		
H. <u>stelleri</u>	X	x	x	
Pleurogrammus monopterygius	x	х	X	
Macrouridae		•	•	
Coryphaenoides pectoralis	· · ·	x		
Myctophidae			* *	
Diaphus theta		́х		
Unid. myctophids		x	. '	
Osmeridae	1			
Mallotus villosus	x	х	x	
Osmerus mordax		x	x	
Thaleichthys pacificus	x	x - 1	x	
Pleuronectidae				
Atheresthes spp (2)		×	x	
Glymtogenhalug zachirug	x v	· · ·	, 1	
<u>Uippedleggalideg</u> alaggeden	· ^	л У	×	
Hippoglossolues elassodoli	X	× ·		
Hippoglossus stenolepis	. X	x	X	
Isopsetta isolepis				
Lepidopsetta bilineata	х	x	x	
Limanda aspera	x	x	x	
L. <u>proboscidea</u>	x	x	x	
Platichthys stellatus	х	, x -	x	
Pleuronectes auadrituberculatus	х	x	x	
Reinhardtius hippoglossoides	x	x	х	
Rajidae				
<u>Raja</u> spp. (11)	х	x	x	
Scorpaenidae		•	. .	
Sebastes alutus		x		
Sobatolobua alagaanug	v	x		

.

.

Table 1--(continued).

Taxon197819791980StichaeidaeLumpenella longirostris×Lumpenus maculatus××L. sagitta××Unid. stichaeids××Trichodon trichodon××Zaproridae××Zaprora silenus××Zoarcidae××Bothrocara brunneum××L. brevipes××L. concolor××L. raridens××L. turneri××Mid. zoarcids××Invertebrates××Caridean shrimp××Argis spp. (4)××Pandalus spp. (4)××Sclerocrangon spp.××Unid. carideans××Newwere were××Newwere were××	1981 x x x x
Stichaeidae x Lumpenella longirostris x Lumpenus maculatus x x L. sagitta x x Unid. stichaeids x x x Trichodon trichodon x x x Zaprora silenus x x x Zaprora silenus x x x Zoarcidae x x x Bothrocara brunneum x x x L. brevipes x x x L. concolor x x x L. concolor x x x L. raridens x x x L. turneri x x x Unid. zoarcids x x x Invertebrates x x x Caridean shrimp x x x Argis spp. (5) x x x Pandalus spp. (4) x x x Sclerocrangon spp. x x x Unid. carid	x x x x x
Lumpenella longirostris x x Lumpenus maculatus x x L. sagitta x x Unid. stichaeids x x Trichodon trichodon x x Zaproridae x x Zaproridae x x Zoarcidae x x Bothrocara brunneum x x Lycodes spp. (10) x x L. brevipes x x L. concolor x x L. palearis x x L. turneri x x Unid. zoarcids x x Invertebrates x x Caridean shrimp x x Argis spp. (5) x x Pandalus spp. (4) x x Sclerocrangon spp. x x Unid. carideans x x	x x x x
Lumpeneria TongTrostris x x Lumpenus maculatus x x L. sagitta x x Unid. stichaeids x x Trichodontidae x x Trichodon trichodon x x Zaproridae x x Zaproridae x x Bothrocara brunneum x x Lycodes spp. (10) x x x L. brevipes x x x L. concolor x x x L. raridens x x x L. turneri x x x Unid. zoarcids x x x Invertebrates x x x Caridean shrimp x x x Argis spp. (5) x x x Evalus spp. x x x Pandalus spp. (4) x x x Vind. carideans x x x	x x x x x
Independs maturatus x x x L. sagitta x x x Unid. stichaeids x x x Trichodon trichodon x x x Zaproridae x x x Zaproridae x x x Zaproridae x x x Zoarcidae x x x Bothrocara brunneum x x x Lycodes spp. (10) x x x L. brevipes x x x L. concolor x x x L. concolor x x x L. raridens x x x L. turneri x x x Unid. zoarcids x x x Invertebrates x x x Caridean shrimp x x x Argis spp. (5) x x x Pandalus spp. (4) x x x Sclerocrangon spp. x x x	x x x x x
L. <u>sagitta</u> x x x x Unid. stichaeids x x x x Trichodontidae <u>Trichodon trichodon</u> x x x x Zaproridae <u>Zaprora silenus</u> x x x <u>Zoarcidae</u> x x <u>Jycodes spp. (10)</u> L. <u>brevipes</u> x x x L. <u>concolor</u> x x x L. <u>concolor</u> x x x L. <u>concolor</u> x x x L. <u>raridens</u> x x x L. <u>turneri</u> x x x Unid. zoarcids x x x x <u>Invertebrates</u> <u>Caridean shrimp</u> <u>Argis spp. (5)</u> x x x x <u>Fualus spp. (4)</u> x x x x <u>Unid. carideans</u> x x <u>Unid. carideans</u> x x	x x x x
Trichodontidae Trichodon trichodon Zaproridae Zaprora silenus Zoarcidae Bothrocara brunneum Lycodes spp. (10) L. brevipes X. X. X. L. concolor X. X. X. L. concolor X. X. X. L. palearis X. X. X. L. raridens L. turneri X. X. X. Unid. zoarcids X. X. X. Invertebrates Caridean shrimp Argis spp. (5) Caridean shrimp Argis spp. (4) X. X. X. Fualus spp. Pandalus spp. (4) X. X. X. X. X. K. Sclerocrangon spp. Unid. carideans X.	x x x
Trichodon trichodon x x x Zaproridae x x x Zoarcidae x x x Bothrocara brunneum x x x Lycodes spp. (10) x x x L. brevipes x x x L. brevipes x x x L. concolor x x x L. palearis x x x L. raridens x x x L. turneri x x x Unid. zoarcids x x x Invertebrates Caridean shrimp x x x Argis spp. (5) x x x x Candean shrimp x x x x Pandalus spp. (4) x x x x Sclerocrangon spp. x x x x Unid. carideans x x x x	x x x
Intendedin tritenouoni x x x x Zaproridae X X X Zoarcidae X X X Bothrocara brunneum X X X Lycodes spp. (10) X X X L. brevipes X X X L. concolor X X X L. palearis X X X L. raridens X X X L. turneri X X X Unid. zoarcids X X X Invertebrates Caridean shrimp X X X Argis spp. (5) X X X X Candean shrimp X X X X Argis spp. (4) X X X X Argis spp. (4) X X X X Vnid. carideans X X X X	x x
Zaprora silenus x x Zoarcidae Bothrocara brunneum x Lycodes spp. (10) x x L. brevipes x x L. oncolor x x L. palearis x x L. raridens x x L. turneri x x Unid. zoarcids x x Invertebrates X x Caridean shrimp x x Argis spp. (5) x x x Crangonidae x x x Pandalus spp. (4) x x x Sclerocrangon spp. x x x Unid. carideans x x x	x x
Zoarcidae x x Bothrocara brunneum x Lycodes spp. (10) x x L. brevipes x x L. brevipes x x L. concolor x x L. palearis x x L. palearis x x L. raridens x x L. turneri x x Unid. zoarcids x x Invertebrates X x Caridean shrimp x x Argis spp. (5) x x x Eualus spp. x x x Pandalus spp. (4) x x x Unid. carideans x x x	x x
Bothrocara brunneum x Lycodes spp. (10) L. brevipes L. brevipes X L. concolor X L. palearis X L. palearis X L. raridens X L. raridens X L. turneri X Vnid. zoarcids X Invertebrates X Caridean shrimp X Argis spp. (5) X X Caridean shrimp X X Pandalus spp. X X Vnid. carideans X X Vnid. carideans X X	x x
Invertebrates x x Lycodes spp. (10) x x L. brevipes x x L. concolor x x L. palearis x x L. palearis x x L. raridens x x L. raridens x x L. turneri x x Unid. zoarcids x x Invertebrates X x Caridean shrimp X x Argis spp. (5) x x x Crangonidae x x x Eualus spp. x x x Unid. carideans x x x	x x
Ligeodes spp. (10) L. brevipes X. X X L. concolor X. X L. palearis X. X X. X X. T L. raridens X. X X. X X. T Unid. zoarcids X. X X. X X. X Unid. zoarcids X. X X. X X X X X X X X X X X X X X	x
L. <u>brevipes</u> L. <u>concolor</u> L. <u>concolor</u> L. <u>palearis</u> L. <u>raridens</u> L. <u>turneri</u> Unid. zoarcids X X X X X X X Unid. zoarcids X X X X X X X X X X X X X X X X X X	A
L. <u>concoror</u> L. <u>palearis</u> L. <u>raridens</u> L. <u>turneri</u> Unid. zoarcids X X X Unid. zoarcids X X X X X X X X X X X X X X X X	
L. <u>parearis</u> L. <u>raridens</u> L. <u>turneri</u> Vnid. zoarcids X X X <u>Invertebrates</u> Caridean shrimp <u>Argis</u> spp. (5) Crangonidae <u>Eualus</u> spp. <u>Pandalus</u> spp. (4) <u>Sclerocrangon</u> spp. Unid. carideans X X X X X X X X X X X X X X X X X X	v
L. <u>turneri</u> x x Unid. zoarcids x x x x <u>Invertebrates</u> Caridean shrimp <u>Argis</u> spp. (5) x x x x Crangonidae x x x x <u>Eualus</u> spp. x <u>Pandalus</u> spp. (4) x x x <u>Sclerocrangon</u> spp. x Unid. carideans x x x	~
Interface x x Unid. zoarcids x x Invertebrates Invertebrates Caridean shrimp X X Argis spp. (5) x x Crangonidae x x Eualus spp. x x Pandalus spp. (4) x x Sclerocrangon spp. x x Unid. carideans x x	
Invertebrates x x x Caridean shrimp Argis spp. (5) x x x Crangonidae x x x Eualus spp. x x x Pandalus spp. (4) x x x Sclerocrangon spp. x x x Unid. carideans x x x	v
Invertebrates Caridean shrimp <u>Argis</u> spp. (5) Crangonidae <u>Eualus</u> spp. <u>Pandalus</u> spp. (4) <u>Sclerocrangon</u> spp. Unid. carideans X X X X X X X X X X X X X	^
Caridean shrimp Argis spp. (5) x x x Crangonidae x x x Eualus spp. x x x Pandalus spp. (4) x x x Sclerocrangon spp. x x x Unid. carideans x x x	
Caridean shrimpArgis spp. (5)xxxCrangonidaexxxEualus spp.xxxPandalus spp. (4)xxxSclerocrangon spp.xxxUnid. carideansxxx	
Argisspp. (5)xxxCrangonidaexxxEualusspp.xxPandalusspp. (4)xxSclerocrangonspp.xUnid.carideansxx	
CrangonidaexxxEualus spp.xxxPandalus spp. (4)xxxSclerocrangon spp.xxUnid. carideansxx	х
Eualus spp.xPandalus spp. (4)xxSclerocrangon spp.xUnid. carideansxx	х
Pandalusspp. (4)xxxSclerocrangonspp.xxUnid. carideansxxx	
Sclerocrangonspp.xUnid. carideansxx	х
Unid. carideans x x	
Anoliuran Crads	
Lithodes aeguispina X	
Paralithodes camtschatica x x x	x
P. platypus x x	x
Brachyuran crabs	
Cancer oregonensis	x
Chionoecetes (hybrid) x x x	x
C. angulatus	
C. bairdí $\mathbf{x} \mathbf{x}$	x
C. opilio x x x	x
Erimacrus isenbeckii x x x	x
Hvas spp. (2) x x x	x
Oregonia gracilis x x	х
Telmessus cheiragonus x x x	x
Echinoderms	
Echinarachnius parma x x x	х
Gorgonocephalus carvi x x x	х
Strongylocentrotus droebachiensis x x x	

1/ Numbers in parentheses indicate the number of species possibly represented.

The total number of biological taxa included in each year's analysis were 1978, 70 (54 fish taxa, 16 major invertebrate taxa); 1979, 80 (62, 18); 1980, 76 (60, 16); and 1981, 65 (49, 16).

Analytical Procedures

Following the selection of hauls (sampling "sites") and taxonomic categories ("species"), program CLUSTER/START was used to prepare the data matrix. Since CPUE values were computed in units of kg/hectare-trawled at this step, no further standardization was required.

Using program CLUSTER, a log(x+1) transformation was applied to the data matrix to reduce the influence of high CPUE values from 2-3 exceptionally abundant species. The Bray-Curtis dissimilarity coefficient was chosen because of its wide usage in marine ecology.

The different clustering strategies that were available ranged from those that tend to cluster early and tightly (termed space contraction) to those that cluster conservatively and maintain separation (termed space dilation). The clustering strategy chosen was the group average method, which has little tendency toward either extreme (Boesch 1977).

After each run of program CLUSTER, the site group dendrogram was analyzed for structure. The difficulty of defining what actually constituted a clustered group led to a certain degree of subjectivity, however. Our method of interpretation was to begin at a high level of dissimilarity (level 1, usually near 0.70) where the total population of sites was divided into a few major groups. Program CLUSTER/MAP was then used to plot the geographic locations of these station groups. If the sites within a -group showed contiguous distributions, a lower level of dissimilarity (level 2) was chosen that divided the major areas into smaller groups. If sites included in these smaller groups were

still contiguous, then a lower level of dissimilarity (level 3) was used to examine pattern at a smaller scale. It is, of course, possible to continue to compare clustering relationships at progressively lower values of dissimilarity until sites either lose their within-group homogeneity or become so small as to be ecologically meaningless except on a very small scale.

As the clusters were formed, small groups of 1-5 hauls (usually showing as individual stations or pairs) occasionally appeared at intermediate levels of dissimilarity between a large major grouping and the next lower set of groups. In the presentation of results, these are included with the large group but not included at the next lower level of dissimilarity. The number of sites shown at the lowest level of dissimilarity, then, can be **smiller** than the number of samples used in the analysis, but in all years was at least 90% of the original total.

The emphasis in this study was on site group classification in order to describe the geographic patterns of community organization. The results of species group classification, showing species relationships based on the similarity of their distribution patterns, are presented as dendrograms without further analysis.

Statistics describing bottom depth, species composition, and faunal densities were computed for each site group.

RESULTS

The results are presented in chronological order. For each year (1978-1981), a summary of the site group dendrogram is followed by a description of site group characteristics and maps showing the geographical distributions of the site groups at three levels of dissimilarity. A dendrogram summarizing the relationships between species, based on similarity of distribution patterns, follows the maps of site groups. Descriptions of species assemblages associated with the various site groups are given in Appendices A-D.

Bering Sea Survey, 1978

At level 1 (D=0.70), the highest level of dissimilarity, the major components-of the 1978 site groupings (see Figures 2-6, Table 2, and Appendix A) were a central shelf group (Group 2) dominated by yellowfin sole (Limanda <u>aspera</u>); an outer shelf group (Group 3) dominated by walleye pollock (<u>Theragra</u> <u>chalcogramma</u>); and a St. Matthew Island group (Group 1) dominated by snow (Tanner) crab (<u>Chionoecetes opilio</u>) and the polar eelpout (<u>Lycodes turneri</u>). A Pribilof Islands group (Group 2B) was formed at the intermediate level of dissimilarity, level 2 (D=0.60), and the outer shelf group divided into north and south components (Groups 3A, 3B). Further divisions of the central shelf group and northern outer shelf group occurred at the lowest level of dissimi-Parity, level 3 (D=0.50).

Bering Sea Survey, 1979

The 1979 survey covered the largest geographical area of the four years, 1978-81, and this was reflected in the results (see Figures 7-11, Table 3, and Appendix B). At the highest level of dissimilarity, level 1 (D=0.75), the major site groups were a mainland inshore group (Group 1) dominated by yellowfin sole and asteroids; a broad continental shelf group (Group 2) dominated

Figure 2. Schematic dendrogram showing the major site groups (areas of similar species composition) and their relationships at different levels of dissimilarity, 1978 Bering Sea trawl survey. Index numbers identify the different site groups. Values in parentheses indicate the number of stations.

Figure 3. Map of level 1 site groups, 1978 Bering Sea trawl survey. Plus signs indicate sampling locations.

Figure 4. Map of level 2 site groups, 1978 Bering Sea trawl survey. Plus signs indicate sampling locations.

Figure 5. Map of level 3 site groups, 1978 Bering Sea trawl survey. Plus signs indicate sampling locations.

Figure 6.

(-)

 $\{ \cdot, \cdot \}_{i \in \mathbb{N}}$

Dendrogram showing relationships between fish and invertebrate species based on similarity of distribution patterns, 1978 Bering Sea trawl survey.

24

. .

	Number	Bottom depth (m)			Mean faunal density
<u> </u>	OL				
Site group	stations	Mean	SD	Range	(kg/na)
1	11	60.0	6.0	44-64	39.2
2	104	63.9	16.6	18-101	278.0
2A	97	63.4	17.0	18-101	288.2
2Ai	57	73.8	11.7	49-101	261.7
2Aii	39	49.3	10.2	26-70	325.5
2B	7	70.5	8.4	60-80	198.9
3	126	118.8	35.3	66-276	168.0
3A	94	110.5	26.9	66 - 188	198.3
3Ai	69	121.4	22.5	80-188	209.9
3Aia	52	127.7	21.8	91 - 188	163.0
3 Aib	13	102.1	10.8	80-117	270.1
3Aii	25	80.3	9.7	66-97	110.8
3B	32	143.1	45.4	104-276	120.2

Table 2.--Summary of site group characteristics, 1978 Bering Sea survey.

1/ See Figure 2.

Figure 7. Schematic dendrogram showing the major site groups (areas of similar species composition) and their relationships at different levels of dissimilarity, 1979 Bering Sea trawl survey. Index numbers identify the different site groups. Values in parentheses indicate the number of stations.

Figure 8. Map of level 1 site groups, 1979 Bering-Sea trawl survey. Plus signs indicate sampling locations.

Figure 9. Map of level 2 site groups, 1979 Bering Sea trawl survey. Plus signs indicate sampling locations.

÷ •

Figure 10. Map of level 3 site groups, 1979 Bering Sea trawl survey. plus signs indicate sampling locations.

. 29

Figure 11. Dendrogram showing relationships between fish and invertebrate species based on similarity of distribution patterns, 1979 Bering Sea trawl survey.

1/	Number	F	Bottom depth (m)	Mean faunal density
Site group	stations	Mean	SD	Range	(kg/ha)
1	33	25.7	6.0	15-38	90.5
2	468	87.4	44.3	11-274	195.8
2A	236	56.6	17.4	11-93	274.7
2Ai	223	55.6	17.1	11-91	287.5
2Aia	129	65.5	12.6	40-91	307.1
2Aib	94	42.0	12.3	11-68	225.3
2Aii	13	73.7	12.4	48-93	246.5
2B	227	120.2	40.4	38-274	184.3
2Bi	202	127.3	36.8	59-274	197.0
2Bia	153	115.0	27.6	59-274	200.3
2Bial	87	113.3	32.7	59-274	187.7
2Bia2	66	117.2	19.0	68-152	200.9
2Bib	49	165.9	35.1	99-241	118.3
2Bii	25	62.7	14.4	38-93	103.6
and the state of the state					
3	51	507.1	134.6	187 - 732	40.4
3A	26	417.0	80.7	187-563	41.9
3B	25	600.7	114.5	439-732	43.0

Table 3 .-- Summary of site group characteristics, 1979 Bering Sea survey.

l/ See Figure 7.

by walleye pollock, yellowfin sole, the snow crab C. <u>opilio</u>, and Pacific cod (<u>Gadus macrocephalus</u>); and a continental slope group (Group 3) dominated by Greenland turbot (<u>Reinhardtius hippoglossoides</u>). At level 2 (D=0.65), the shelf group divided into an outer shelf group (Group 2Bi), and north and south central shelf groups (Groups 2Bii, 2A) including St. Matthew Island. At level 3 (D=0.55), a Pribilof Islands group (Group 2Aii) separated from the central shelf group, and the continental slope group divided into two depth zones (Groups 3A, 3B). Other divisions also occurred in the central and outer shelf areas.

Bering Sea Survey, 1980

The 1980 results (see Figures 12-16, Table 4, Appendix C) were similar to those of 1978, although more of the central shelf area was surveyed. At level 1 (D=0.70), the highest level of dissimilarity, the major site groups were St. Matthew Island (Group 1), the central shelf (Group 2), and the outer shelf (Group 3). Although snow crab (C. <u>opilio</u>) dominated the St. Matthew Island group, as in 1978, a different eelpout, <u>Lycodes raridens</u>, was also abundant. The central shelf group had a larger proportion of walleye pollock in addition to yellowfin sole. At dissimilarity level 2 (D=0.60), the central shelf group split to form an inshore group (Group 2B). Subdivisions that formed at dissimilarity level 3 (D=0.50) were a Pribilof Islands group (Group 2Aii) and further divisions of central and outer shelf groups.

Bering Sea Survey, 1981

Three site groups were formed at the highest level of dissimilarity, level 1 (D=0.60), in 1981 (see Figures 17-21, Table 5, and Appendix D). These were a shallow, inner Bristol Bay group (Group 1) dominated by yellowfin sole and asteroids; a central shelf group (Group 2) dominated by yellowfin sole and walleye pollock; and an outer shelf group (Group 3) dominated by walleye

Figure 12. Schematic dendrogram showing the major site groups (areas of similar species composition) and their relationships at different levels of dissimilarity, 1980 Bering Sea trawl survey. Index numbers identify the different site groups. Values in parentheses indicate the number of stations.

Figure 13. Map of level 1 site groups, 1980 Bering Sea trawl survey. Plus signs indicate sampling locations.

Figure 14. Map of level 2 site groups, 1980 Bering Sea trawl survey. Plus signs indicate sampling locations.

ա Մ

Figure 15. Map of level 3 site groups, 1980 Bering Sea trawl survey. Plus signs indicate sampling locations.

đ

Figure 16. Dendrogram showing relationships between fish and invertebrate species based on similarity of destribution patterns, 1980 Bering Sea trawl survey.

	Number				Mean faunal
<u>1</u> /	of	Bo	ottom depth (m	n)	density
Site group	stations	Mean	SD	Range	(kg/ha)
1	18	69.1	13.7	44-97	95.4
2	207	58.1	20.3	15 - 102	268.6
2A	159	66.2	15.2	35-102	272.4
2Ai	149	66.1	15.4	35-102	248.0
2Aia	81	67.6	15.7	37-102	258.9
2Aial	57	75.8	10.1	60-102	260.4
2Aia2	24	48.2	7.3	37-62	201.2
2Aib	67	64.2	14.8	35-101	186.4
2Aii	10	68.0	13.5	46-95	360.7
2B	48	31.2	8.8	15-55	193.6
. 3	115	120.5	20.9	84-243	161.2
3A	60	121.5	23.8	84-243	157.3
3в	54	120.1	16.8	95-163	159.0

Table 4.--Summary of site group characteristics, 1980 Bering Sea survey.

l/ See Figure 12.

Figure 17. Schematic dendrogram showing the major site groups (areas of similar species co&position) and their relationships at different levels of dissimilarity, 1981 Bering Sea trawl survey. Index numbers identify the different site groups. Values in parentheses-indicate the number of stations.

Figure 18. Map of level 1 site groups, 1981 Bering Sea trawl survey. Plus signs indicate sampling locations.

Figure 19. Map of level 2 site groups, 1981 Bering Sea trawl survey. Plus signs indicate sampling locations.

Figure 20. Map of level 3 site groups, 1981 Bering Sea trawl survey. Plus signs indicate sampling locations.

,

Figure 21.

.

Dendrogram showing relationships between fish and invertebrate species based on similarity of distribution patterns, 1981 Bering Sea trawl survey.

1/	Number of	В	ottom depth (1	m)	Mean faunal density
Site group	stations	Mean	SD	Range	(kg/ha)
1	7	28.0	8.8	13-37	99.7
2	165	68.0	15.7	31-110	270.0
2A	84	71.3	12.3	40-102	211.2
2Ai	61	69.2	12.1	40-99	190.9
2Aii	23	77.0	11.0	64-102	265.0
2B	79	63.9	17.7	31-102	325.6
3	122	122.6	21.9	66-177	132.3
3A	60	116.0	21.6	66-174	126.1
3Ai	41	118.4	18.5	86-152	154.6
3Aii	19	110.7	26.9	66-174	64.5
3B	53	131.8	17.7	97-177	151.8

Table 5.--Summary of site group characteristics, 1981 Bering Sea survey.

1/ See Figure 17.

pollock, Pacific cod, and snow crabs C. <u>opilio</u> and C. <u>bairdi</u>. At the intermediate level of dissimilarity, level 2 (D=0.50), the central shelf group divided into two groups (2A, 2B) and a shelf edge component (Group 3B) was differentiated from the outer shelf group. A Pribilof Islands group (Group 2Aii) was formed at the lowest level of dissimilarity, level 3 (D=0.45). THIS PAGE INTENTIONALLY LEFT BLANK

DISCUSSION

One would expect that in a limited geographical area, the species composition of a group of trawl samples would exhibit some degree of similarity. It is also reasonable to expect that in a larger area, a group of samples may exhibit more within-group homogeneity than similarity to an adjoining group. The difficulty in an analysis of a biological system is to define the boundaries of these groups in a repeatable, reasonably objective manner. Herein lies one of the advantages of numerical classification techniques.

The evidence presented here is indicative of large-scale patterns of. community organization in the eastern Bering Sea. Over the 4 years studied, 1978-81, the geographical distributions of the major site groups were highly contiguous with minimal scattering. Additionally, at least several of the site group boundaries remained consistent over the years analyzed.

Generally for each year, the first differentiation of the survey area, on the basis of similarity of species composition, was to form inner, central, and outer continental shelf groups. The extent of the survey and types of sampling gear used in a given year seemed to influence how these separations occurred. For example, in 1979 the continental slope area was extensively surveyed using a trawl equipped with roller gear; these samples, for one reason or another, were distinctly different from the shelf and nearshore groups (Figure 8). In 1978, the continental slope and nearshore areas were not surveyed and the first differentiation occurred between the St. Matthew Island and shelf groups (Figure 3). The shelf group then divided into central and outer shelf subgroups.

Certain boundaries and areas were repeated with few differences over the 4 year time period. For example, the faunas in the Pribilof Islands and St.

Matthew Island areas (during the years in which surveys extended that far north) invariably showed as distinct community groups (see Figures 4, 10, 15, and 20). The locations of the southern boundaries between central and outer shelf groups (Groups 2 and 3) were also similar between all 4 years (Figures 3, 9, 13, 18).

A further interesting aspect of the analysis was the opportunity to distinguish species of the various site groups which were important to their differentiation. For example, in 1978 the middle shelf group, site group 2 (Figure 3), was differentiated from the outer shelf and St. Matthew Island groups (site groups 1 and 3) by the dominance of yellowfin sole on the middle shelf (Appendix A: Tables A-1, A-2, and A-7). Further division of the middle shelf group separated the Pribilof Islands, site group 2B, from the rest of the shelf (Figure 4). The species assemblage in the Pribilof Islands area was marked by higher densities of snow crab and cottids (Appendix A: Table A-6). The remainder of the shelf was divided into two groups (Figure 5): the central shelf, site group 2Ai, and Bristol Bay, site group 2Aii. Although both areas were dominated by yellowfin sole, the Bristol Bay group showed a significantly lower density of snow crab and walleye pollock (Appendix A: Tables A-4, A-5).

ACKNOWLEDGMENTS

We are indebted to Albert Tyler, Oregon State University, Corvallis, for providing the original computer program, CLUSTER, for development. We also wish to acknowledge the invaluable support of the NWAFC Computer Center. THIS PAGE INTENTIONALLY LEFT BLANK

REFERENCES

BAKKALA, R. G., K. KING, and W. HIRSCHBERGER. 1981. Commercial use and management of demersal fish. In D. W. Hood and J. A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, Volume 2, p. 1015-1036. Univ. Wash. Press, Seattle. BOESCH, D. F. 1977. Application of numerical classification in ecological investigations of water pollution. Va. Inst. Mar. Sci., Spec. Sci. Rep. 77, 114 p. (Avail. U.S. Dep. Commer., Natl. Tech. Inf. Serv., Springfield, Va., as EPA-600/3-77-033.) CLIFFORD, H. T., and W. STEPHENSON. 1975. An introduction to numerical classification. Academic Press, Inc., New York, 229 p. COONEY, R. T. 1981. Bering Sea zooplankton and micronekton communities with emphasis on annual production. In D. W. Hood and J. A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, Volume 2, p. 947-974. Univ. Wash. Press, Seattle. FAGER, E. W. 1963. Communities of organisms. In M. N. Hill (editor), The sea, Volume 2, p. 415-437, New York Interscience, N.Y. FAVORITE, F., and T. LAEVASTU. 1981. Finfish and the environment. In D. W. Hood and J. A. Calder (editors), The eastern Bering Sea shelf:, oceanography and resources, Volume 1, p. 597-610. U. S. Gov. Print. Off., Washington, D. C. GABRIEL, W. L., and A. V. TYLER. 1980. Preliminary analysis of Pacific coast demersal fish assemblages. Mar. Fish. Rev. 42(3-4):83-88. 1981. Assemblage analysis of National Marine Fisheries Service rockfish survey, 1977-1978. Unpubl. manuscr., 158 p. Completion report for contract PO 01-7-208-11525, Northwest and Alaska Fish. Cent., Natl. Mar.- Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, Wa. 98112. GUNDERSON, D. R., and T. M. SAMPLE. 1980. Distribution and abundance of rockfish off Washington, Oregon, and California during 1977. Mar. Fish. Rev. 42(3-41):2-16. HAFLINGER, K. 1981. A survey of benthic infaunal communities of the southeastern Bering Sea shelf. In D. W. Hood and J. A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, Volume 2, p. 1091-1103.Univ. Wash. Press, Seattle. JEWETT, S. C., and H. M. FEDER. 1981. Epifaunal invertebrates of the continental shelf of the eastern

Bering and Chukchi Seas. In D. W. Hood and J. A. Calder (editors),

The eastern Bering Sea shelf: oceanography and resources, Volume 2, p. 1131-1153. Univ. Wash. Press, Seattle.

KIHARA, K.

- 1976. Studies on the formation of demersal fishing ground, 3. Recurrent group analysis of demersal fish in the eastern Bering Sea. Mer (Tokyo) 14(1):11-22.
- KINDER, T. H., and J. D. SCHUMACHER.
- 1981. Hydrographic structure over the continental shelf of the southeastern Bering Sea. In D. W. Hood and J. A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, Volume 1, p. 31-52. U. S. Gov. Print. Off., Washington, D. C.
- LANCE, G. N., and W. T. WILLIAMS.
 - 1966. Computer programs for hierarchical polythetic classification ("similarity analyses"). Comput. J. 9:60-64.

MAY, R.,M.

- 1979. The structure and dynamics of ecological communities. In R. M. Anderson, B. D. Turner, and L. R. Taylor (editors), Population dynamics, p. 385-407. Blackwell Sci. Publ. Inc., Boston, Mass.
- MAY, R. M., J. R. BEDDINGTON, C. W. CLARK, S. J. HOLT, and R. M. LAWS. 1979. Management of multispecies fisheries. Science (Wash. D.C.) 205: 267-277.

MINTEL, R. J., and G. B. SMITH.

- 1981. A description of the resource survey data-base system of the Northwest and Alaska Fisheries Center, 1981. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-18, 111 p.
- OTTO, R. S.
 - 1981. Eastern Bering Sea crab fisheries. In D. W. Hood and J. A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, Volume 2, p. 1037-1066. Univ. Wash. Press, Seattle.

PEREYRA, W. T., J. E. REEVES, and R. G. BAKKALA.

1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Unpubl. manuscr., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, Wa. 98112.

SEMENOV, V. N.

1964. Kolichestvennoe raspredelenie bentosa na shel'fe iugo-vostochnoi chast Beringova moria [Quantitative distribution of benthos on the shelf of the southeastern Bering Sea (Bristol Bay, Alaska Peninsula coast, and Unimak Island)]. Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 53 (Izv. Tikhoodean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 52):177-184. In Russian. (Transl. by Israel Prog. Sci. Transl., 1968, p. 167-175 in P; A. Moiseev (chief editor), Soviet fisheries investigations in the northeast Pacific, Part 3, avail. U. S. Dep. Commer., Natl. Tech. Inf. Serv., Springfield, Va., as TT 67-51205. SMITH, G. B., and R. G. BAKKALA. 1982. Demersal fish resources of the eastern Bering Sea: spring 1976. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-754, 129 p.

STOKER, S.

1981. Benthic invertebrate macrofauna of the eastern Bering/Chukchi continental shelf. In D. W. Hood and-J. A. Calder (editors), The eastern Bering Sea shelf: oceanography and resources, Volume 2, p. 1069-1090. Univ. wash. Press, Seattle.

WATHNE, F.

1977. Performance of trawls used in resource assessment. Mar. Fish. Rev. 39(6):16-23.

WIENS, J. A.

1981. Single-sample surveys of communities: are the revealed patterns real? Am. Nat. 117:90-98.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

Species Assemblages, 1978 Bering Sea Survey

Table]	Page
A-l.	Site	Group	1 .						•	•			•	•				•			•		•	•	56
A-2.	Site	Group	2.			•	•	•••	•		•		•	•			•				•			•	57
A-3.	Site	Group	2A		•	•			•	•	•	•	•	•					•		•	•		•	59
A-4.	Site	Group	2Ai			•	•		•	•	•	•	•	•			•	•						•	61
A-5.	Site	Group	2Aii	•	•		•	•	•	•	•	•	•	•					•					•	62
А-б.	Site	Group	2в.		•	• •	•		•	•	•	•	•	•			•	•			•	•	•	•	63
A-7.	Site	Group	3.			•		. .		•	•	•		•	•		•		,	•	•	•	•	•	64
A-8.	Site	Group	3A		•		•		•	•	•	•	•	•	•		•	•		•		•	•	•	66
A-9.	Site	Group	3Ai		•	•				•	•	•	•	•	•	•			•		•	•	•	•	67
A-10.	Site	Group	3Aia									•				•		•			•				68
A-11.	Site	Group	3Aib		•	•			•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	69
A-12,	Site	Group	3Aii				-			•						•			•					.7	0
A-13.	Site	Group	3B																						71

Table A-1. Site Group 1

			******	******	******************************
	NEAN CPUE	PROP. DF	CUMUL. PROP.	FREQ. OF	
	(KG/HA)	CPUE 0	F CP UE	OCCURI	R. TAXA
****	*******	****	******	******	*************************
1	10.28	. 26 2	.262	1.00	CHIONOECETES OPILIO
2	9.15	.234	.496	0.82	LYCODES TURNERI
3	2.94	.075	.571	0.36	PARALITHODES PLATYPUS
4	2.70	.069	.640	0.91	PAGURIDAE
5	2.49	.063	.703	0.64	GORGONDCEPHALUS CARYI
6	2.06	.053	.756	0.55	NYOXCCEPHALUS SP
7	1.71	.044	.799	0.64	ANVERTEBRATE UNIDENT
8	1.05	.027	.826	0.45	HYAS SP
9	0.96	.024	.850	0.73	NEPTUNEA HEROS
10	0.91	.023	.874	1.00	REINHARDTIUS HIPPOGLOSSOIDES
11	0.76	.019	.893	1.00	LIPARIS DENNYI
12	0.67	.017	.910	0.45	STARFESH UNEDENT
<u>ئ</u> 3	0.65	.016	•927	0.64	PLEUFONECTES QUADRITUBERCULATUS
14	0.50	.013	.939	0.36	LEPTASTERIAS SP
15	0.43	.011	.950	1.00	THERAGRA CHALCOGRAMMA
16	0-41	.011	.951	0.45	NEPTUNEA VENTRICOSA
17	0.27	.007	.968	0.73	HEMILEPIDOTUS SP
18	0.21	.005	.973	1.00	GADUS HACROCEPHALUS
19	0.18	.005	.978	0.36	MARGARITES SP
20	0.16	.004	.982	0.09	BOLTENIA OVIFERA
21	0.12	.003	•985	0.91	HIPPOGLOSSOIDES ELASSODON
22	0.09	.002	.987	0.45	PLICIFUSUS KROYERI
23	0.08	.002	.989	0.27	ZOARCIDAE
24	0.05	.001	•990	0.18	HIPPOGLOSSUS STENOLEPIS

101AL 39.20

- NUMBER OF HAULS- 11, MEAN DEPTH= 60.0M (RANGE= 44- 64M)

.

Table A-2. Site Group 2

****	*******	******	*****	*****	*********************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPVE	0F	PROP.	OF	
	(KG/HA)	CPUE D	F CP UE	OCCURI	R. TAXA
****	*******	******	******	*****	****************
-					
1	111.30	•400	•400	1.00	LINANDA ASPERA
2	18.02	.065	• 465	0.78	CHIONOECETES OPILIO
3	16.78	•060	•525	0.70	STARFISH UNIDENT
4	16.68	•060	•585	0.77	PARALITHODES CANTSCHATICA
5	15.74	.057	•642	0.90	THERAGRA CHALCOGRAMMA
6	11.95	.043	.685	0.85	PLEURONECTES GUADRETUBERCULATUS
7	10.76	039 -	•724	0.87	NYOXOCEPHALUS SP
8	10.37	.037	.761	0.98	LEPIDOPSETTA BELINEATA
9	10.08	.036	•797	0.99	GADUS MACRUCEPHALUS
16	8.15	.022	-819	0.25	PUREFERA
11	0.15	.022	•842	0.62	PAGUNIDAE
12	5-07	-018	.000	0.92	CHIUNUECEIES BAIKUM
12	4.29	•015	•01/0	0.08	ANVERIEURAIL UNADENI
14	3.90	• 4 4	• 00 y	0.40	NEFIGNEA NERUS Hangewithta Anganitan
12	2.02	• UU Y	•0 7 0	0.67	DEINGARDING UIOPOCLOSCIDES
10	1.50	• 900 0.04	•704 010	V • 0 J	NEMARDING ADDANT
19	1 50	000	•710	0 80	HIPPECIASSATASS STASSAAN
10	1.53	.006	.921	0.02	PARALTHUDES PLATYPUS
20	1.50	.005	. 926	0.37	CCRCCNDCCPHALUS CARVI
21	1.46	-005	.932	0.47	IINANDA PROBDISCIDEA
22	1.35	.005	- 937	0.45	LYCOBES PALEARIS
23	1.12	.004	-941	0.19	COTTIDAE
24	1.11	. 004	-945	0.37	GYMNGCANTHUS SP
25	1.09	.004	.949	0.38	ERIMACRUS ISENBECKAI
26	1.05	.004	.952	0.81	AGONUS ACIPENSERINUS
27	0.83	.003	• 955	0.03	LEPTASTERIAS SP
28	0.82	.003	.958	0.13	BCLTENIA OVIFERA
29	0.78	.003	.961	0.54	NEPTUNEA VENTRICOSA
30	0.73	. 003	•964	0.43	NEPTUNEA LYRATA
31	0.70	.003	•966	0.03	ICELINUS BOREALIS
32	0.68	.002	•969	0.24	CUCUMARIA SP
33	0.65	.002	- 97 1	0.52	HIPPEGLOSSUS STENOLEPIS
34	0.64	.002	•973	0.41	RAJA SP
35	0.59	.002	.975	0.10	ASCIDIAN UNIDENT
36	0.55	.002	•977	0-13	SEA ANEMONE UNIDENT
37	0.49	.002	• 97 9	0.41	CHIONDECETES HYBRID
38	0.46	.002	.981	0.12	ECHINARACHNIUS PARMA
39	0.45	.002	•982	0.67	HYAS SP
40	0.43	.00Z	•984	0.31	ATHEFESTHES SP
41	U-42	.002	• 985	0.09	REFIUNEA SP
42	0.57	.001	• 78%	U-31	GASINUPUD UNADENT
4 5	0.53	.001	• 798	0.20	EUNEPHINYA (GERSENIAJ RUBIFORMIS

CCONTINUED ON NEXT PAGE)

Table A-2. Site Group 2 (continued)

MEAN PROP. CUMUL. FREQ. CPUE OF PROP. OF (KG/HA) CPUE OF CPUE OCCURR. TAXA 44 0.27 .001 .989 0.16 NEPTUNEA PRIBILOFFENSIS 45 0.26 .001 .990 0.05 ASTERIAS AMURENSIS 46 0.23 .001 .991 0.20 PAGURUS OCHOTENSIS

TOTAL 278.04

+ NUNBER DF HAULS-104, NEAN DEPTH= 63.9N (RANGE= 18-101M)

Table A-3. Site Group 2A

	*******	******	******	*****	*********************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE C	IF CPUE	OCCUR	R. TAXA
1	****	*****	******	*****	***********
1	120.57	.418	.418	1.00	LINANDA ASPERA
2	18.10	.063	.481	0.69	STARFISH UNIDENT
3	17.43	.060	•542	0.81	PARALITHODES CANTSCHATICA
4	16.82	.058	.600	0.90	THERAGRA CHALCOGRANNA
5	16.40	.057	. 657	0.76	CHIONOECETES OPILIO
6	13.23	.046	.703	0.86	PLEURDNECTES QUADRETUBERCULATUS
7	11.05	.038	.741	0.92	MYOXOCEPHALUS SP
8	10.51	.036	.778	0.99	GADUS NACROCEPHALUS
9	10.38	•036	.814	0.98	LEPIDOPSETTA BILINEATA
10	6.26	.022	.835	0.59	PAGURIDAE
11	6.14	.021	.857	0.25	PORIFERA
12	4.95	.017	.874	0.92	CHIDNDECETES BAIRDI
13	4.65	.016	.890	0.06	INVERTEBRATE UNIDENT
14	4.38	.015	.905	0.42	NEPTUNEA HEROS
15	2.38	.008	•913	0.06	HALOCYNTHIA AURANTIUM
16	1.71	.006	•919	0.82	HIPPOGLOSSOIDES ELASSODON
17	1.70	.006	.925	0.62	REINHARDTIUS HIPPOGLOSSOIDES
18	1.67	.006	.931	0.39	GORGONDCEPHALUS CARYI
19	1.55	.005	.937	0.51	LIHANDA PROBOSCIDEA
20	1.50	.005	•942	0.46	LYCODES PALEARIS
21	1.15	.004	.946	0.38	GYNNUE ANTHUS SP
22	1.02	.004	•949	9.80	AGUNUS ACIPENSERINUS
23	1.02	.984	• 953	9.16	CUTTIDAE
24	10.07	.005	• 726	0.03	LEPTASTEREAS SP
25	0.85	.005	• 95 9	0.15	BULTENIA OVIFERA
20	0.79	.003	• 962	0.55	NEPTUNEA VENTRICOSA
20	Vof 4	-003	• 964	0.40	NEPIUNEA LIKALA
20	0.12	.002	• 701	9+26	LUCURANIA SP
27	V. DO	.002	• 707	V•42	KAJA SP.
JU JU	V.00	• UUZ	• 771	0.10	HIPPUGLUSSUS SIEMULEPIS
12	V+07	• • • • • • • • • • • • • • • • • • • •	• 77 4	0.10	ASLIDIAN UNIDENI
32	9.JJ	- VUZ	•783 977	9-12 0 70	SEA ANERUNE UNBUENI Chiologogica underg
33	0 	002	0741		CULANTOTOTAL DADAY
34	0.47	. 002	•767 QRA	0 00	NEGTHNEL CD
35	0.44	.002	.982	0.60	WYAC CD
30	0.44	.002	983	0.31	ATHERECTHES SD
38	0.40	.001	985	0.30	GASTROPOD UNTOENT
39	0-37	.001	986	0.22	FUNEBALANA (CENCENTE) DINTEUDATE
40	0.31	.001	_ 987	0.34	FRINACRIS I SENDERKIS
41	0_28	.001	_98A	0.18	NEPTHNEA PRIRILAEFENCIC
42	0.27	.001	.989	0.05	ASTERIAS AMURENSIS
43	0.25	.001	.990	0.22	PAGURUS OCHOTENSIS
		-			

(CONTINUED ON NEXT PAGE)

Table A-3. Site Group 2A (continued)

.

NEAN PROP. CUMUL. FREQ. CPUE OF PROP. OF (KG/HA) CPUE OF CPUE OCCURR. TAXA 44 Q.23 .001 .991 Q.31 HENILEPIDOIUS JORDANI TOTAL 288.20

•

* NUMBER OF HAULS- 97, MEAN DEPTH= 63.4M (RANGE= 18-101M)

Table A-4. Site Group 2Ai

****	*******	******	*****	******	********
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	0F	PROP .	DF	
	(KG/HA)	CPUE D	IF CPUE	OCCURI	R. TAXA
****	*******	******	******	*****	********************
1	95.54	.365	.365	1.00	LIMANDA ASPERA
2	27.80	.106	.471	0.98	THERAGRA CHALCOGRAMMA
3	21.68	.083	• 554	0.70	PARALITHODES CANTSCHATICA
4	21.62	.083	•637	1.00	CHIONOECETES OPILIO
5	14.84	.057	.694	0.95	PLEURONECTES QUADRITUBERCULATUS
6	7.54	.029	.722	0.14	POREFERA
7.	7.25	.028	.750	0.86	NYOXOCEPHALUS SP
8	6.98	.027	.777	0.68	PAGURIDAE
9	6.35	.024	.801	0.11	INVERTEBRATE UNIDENT
10	6.01	.023	.824	0.98	CHIONDECETES BAIRDI
11	5.65	.022	.846	0.67	STARFISH UNIDENT
12	5.61	.021	.867	1:00	GADUS NACROCEPHALUS
13	4.52	.017	.884	0.39	NEPTUNEA HEROS
14	3.28	.013	.897	0.96	LEPEDOP SETTA BILINEATA
15 -	3.24	.012	.909	0.11	HALOCYNTHIA AURANTIUN
16	2.50	.010	.919	0.95	HIPPOGLOSSOIDES ELASSODON
17	2.38	.009	.928	0.79	REINHARDTIUS HIPPOGLOSSOIDES
18	2.27	.009	•936	0.51	GORGONO CEPHALUS CARYI
19	2.23	.009	.945	0.72	LYCODES PALEARES
20	. 1.41	.005	•950	0.23	COTTIDAE
21	1.29	.005	• 955	0.58	NEPTUNEA LYRATA
22	0.93	.004	• 95 9	0.67	RAJA SP
23	0.83	• 00 3	•962	0.37	ATHERESTHES SP
24	0.82	.003	•965	0.54	NEPTUNEA VENTRICOSA
25	0.76	.003	• 968	81.0	SEA ANEMONE UNIDENT
26	0.74	.003	.971	0.67	AGONUS ACIPENSERINUS
27	9.69	.003	.974	0.16	NEPTUNEA SP
28	0.66	.003	•976	0.58	CHIONOECETES HYBRID
29	0.65	.003	• 97 9	0.54	HIPPOGLOSSUS STENOLEPIS
30	0.57	.002	.981	0.46	GASTROPOD UNIDENT
31	0.57	.002	- 983	0.12	GYNNCCANTHUS SP
32	0.50	.002	• 985	0.26	NEPTUNEA PRIBILOFFENSIS
33	0.42	.002	- 986	0-37	ERINACRUS ISENBECKII
34	0.37	.001	•988	0-44	HEMILEPIDOTUS JORDANI
35	0.32	.001	- 98 9	0.14	PAGURUS ALEUTICUS
36	0.30	.001	•990	0.18	PAGURUS TRIGONOCHEIRUS

TOTAL 261.69

* NUNBER OF HAULS- 57. NEAN DEPTH= 73.8H (RANGE= 49-101H)

'61

Table A-5. Site Group 2Aii

****	********	*********	*******	************************
	MEAN	PROP. CUMU	L. FREQ.	
	CPUE	OF PROP	• OF	
	(KG/HA)	CPUE OF CP	UE OCCUR	R. TAXA
****	*******	********	*******	*********************
1	137.69	• 424 • 42	4 1.00	LINANDA ASPERA
2	49.04	.151 .57	4 0.72	STARFISH UNIDENT
3	25.88	.080 .65	4 0.97	GADUS NACROCEPHALUS
4	23.83	.073 .72	7 1.00	LEPIDOPSETTA BILINEATA
5	15.09	.046 .77	3 1.00	MYDXOCEPHALUS SP
6	13.76	.942 .81	6 0.97	PARALITHODES CANTSCHATICA
7	8.03	.025 .84	0 0.12	PLEURONECTES QUADRITUBERCULATUS
8	5.60	.017 .85	8 0.44	PAGURIDAE
9	4.74	.015 .87	2 0.85	CHIONOECETES BAIRDI
10	4.69	.014 .88	7 0.44	CHIONOECETES OPILIO
11	4.60	.014 .90	1 0.38	PORIFERA
12	4-11		3 0.49	NEPTUNEA HERDS
13	3.77	.012 .92	5 0.97	LINANDA PROBUSCIDEA
14	2.53	.008 .93	3 0.74	GYNNOCANTHUS SP
15	2.39	.007 .94	0 0.18	ASCIDIAN UNIDENT
16	2.08	.006 .94	6 0.79	THERAGRA CHALCOGRAMMA
17	1.80	.006 .95	2 0.31	BOLTENIA OVIFERA
18	1.73	.005 .95	7 0.05	LEPTASTERIAS SP
19	1.49	.005 .96	2 0.28	CUCUNARIA SP
20	1.26	.004 .96	6 0.31	EUNEPHTHYA (GERSEMIA) RUBIFORNIS
21	1.26	.004 .97	0 1.00	AGONUS ACIPENSERINUS
22	1.90	.003 .97	3 0.23	ECHINARACHNIUS PARNA
23	0.99	.003 .97	6 0.51	NEPTUNEA VENTRICOSA
24	9.82	.003 .97	8 0.77	HYAS SP
25	9.78	.002 .98	1 0.51	HIPPOGLOSSUS STENOLEPIS
26	0.70	.002 .98	3 0.46	PAGURUS OCHOTENSIS
27	0.56	.002 .98	4 0.10	ASTERIAS AMURENSIS
28	0.50	.002 .98	6 0.77	HEXAGRAMMOS STELLERI
29	0.47	.001 .98	7 0.13	TELMESSUS CHEIRAGONUS
30	0.46	.001 .98	9 0.67	HIPPOGLOSSOIDES ELASSODON
31	0.43	.001 .99	0.0.23	GORGGNOCEPHALUS CARYI

TOTAL 325.48

I.

* NUMBER OF HAULS- 39, NEAN DEPTH= 49.3H (RANGE= 26- 70M)

Table A-6. Site Group 2B

****	*******	******	*****	*****	**********************
	MEAN	PROP.	CUMUL.	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE O	F CP UE	OCCURI	R. TAXA
****	*******	****	*****	*****	*****************************
1	33.96	.171	.171	1.00	CHIONDECETES OPILIO
2	27.09	.136	.307	0.57	HENILEPIDOTUS JORDANI
3	26.42	.133	.440	1.00	PARALITHODES PLATYPUS
4	15.91	.080	.520	0.14	ICELINUS BOREALIS
5	15.79	. 079	.599	1.00	LEMANDA ASPERA
6	13.57	.068	.667	1.00	LEPIDOPSETTA BILINEATA
7	9.72	.049	.716	1.00	ERIMACRUS ISENBECKII
8	8.12	.041	.757	1.00	GADUS MACROCEPHALUS
9	6.77	.034	.791	0.86	STARFISH UNIDENT
10	5.99	.030	. 821	1.00	PAGURIDAE
11	5.92	.030	.851	0.29	PORIFERA
12	5.10	.026	.877	1.00	CHIONOECETES BAIRDI
13	5.04	.025	.902	0.14	NYOXOCEPHALUS SP
14	3.56	.018	.920	0.14	HALOCYNTHIA AURANTIUN
15	3.02	.015	.935	0.57	COTTIDAE
16	1.57	. 008	.943	0.14	PARALITHODES CANTSCHATICA
17	1.52	.008	.951	0.29	INVERTEBRATE UNIDENT
18	1.31	.007	.957	0.71	NEPTUNEA VENTRICOSA
19	1.30	.007	.964	0.86	AGONUS ACIPENSERINUS
20	9.88	.004	.968	0.71	CHIONOECETES HYBRID
21	0.71	.004	.972	0.86	REINHARDTIUS HIPPOGLOSSOIDES
22	0.66	.003	.975	1.00	THERAGRA CHALCOGRANNA
23	0.55	.003	.978	0.71	PLEURDNECTES QUADRITUBERCULATUS
24	0.52	.003	.980	0.29	RAJA SP
25	0.50	. 00 3	. 983	0.43	HYAS SP
26	0.49	.002	.985	0.14	SEA ANENONE UNIDENT
27	Q. 48	.002	. 988	0.43	EUNICROTREMUS ORBIS
28	0.47	.002	.990	0.86	NEPTUNEA LYRATA
-		- •			

TOTAL 198.90

* NUMBER OF HAULS- 7, MEAN DEPTH= 70.5% (RANGE= 60- 80M)

· . . .

.

Table A-7. Site Group 3

	HEAN	PROP.	CUMUL.	FREQ.	
	CPUE	OF	PROP -	OF	
	(KG/HA)	CPUE D	F CPUE	OCCUR	IR. TAXA
***	********	*****	*****	*****	***********************
•	03 40		697	• • •	
1	76 + 0 Y 16 - 8 7	• 20 3 6 4 6	• 203	1.90	TREMAGNA CHALCUGKAMMA
2	11 22	•000 ∩67	-971 738	0.00	CHAUNDECELEC UBBIJU
4	4.64	.028	.766	0.94	HIPPEGLOSSOIDES FLASSODON
5	4.04	.026	.792	0.92	RETNHARDITUS HIPPOGLOSSOTOFS
6	3.33	. 020	.812	0.27	20ARCIDAE
7	3.02	.018	.830	0.59	ATHERESTHES SP
8	2.82	.017	.846	0.47	LYCODES BREVIPES
9	2.13	.016	.863	9.47	GORGENOCEPHALUS CARYI
10	2.41	.014	.877	0.74	RAJA SP
11	2.13	.013	.890	0.57	CHIONOECETES BAIRDI
12	1.65	.010	.899	0.64	LYCODES PALEARIS
13	1.34	B00	.907	0.18	LYCODES TURNERI
14	1.34	800	•915	0.80	PAGURIDAE
15	0.99	.006	.921	0.56	PANDALUS SP
L 6	0.93	.006	.927	0.30	STARFISH UNIDENT
17	0.84	.005	.932	0.21	COTTEDAE
18	0.81	•005	•937	0.14	PARALITHODES PLATYPUS
19	0.65	.004	•941	0.24	OCTOPUS UNIDENT
20	0.55	.003	•944	0.17	CTENEDISCUS CRISPATUS
:1	0.55	.005	•947	0.32	NEPTUNEA SP
22	0-54	.003	-950	0.21	PLEURONECTES QUADRITUBERCULATUS
2.5	0.51	• 00 5	•953	0.18	HIPPUGLUSSUS STENOLEPIS
24	0.47	.003	• 900	0.44	NEPTUNEA PRIBILUFFENSIS
20	Q. 47	.003	• 7 7 7	0.34	NERALEPIDUIUS JUNDANI
20	U-44 0 /1	• UU J	• YOZ	0.06	RIUXULEMALUS SP
29	0.41	• UUZ	• 704		DATHYMACTED STENATHS
20	0.33	.002	.968	0.24	DAININAJILA JIDNALUJ Mentipiptedik dinaluj
30	0.33	- 002	. 97.0	0.05	SERASTES AN UTILS
31	0.32	.002	.972	0.39	AASYCATINS SETTGER
32	6.32	- 002	. 97 4	0.21	LTHANDA ASPERA
33	0.30	.002	.976	0.38	LEPIDOP SETTA BILINEATA
34	0.28	.002	.978	0.16	THALEICHTHYS PACIFICUS
35	0.27	.002	.979	0.25	HENILEPIDOTUS SP
36	0.26	.002	.981	0.47	ICELUS SPINIGER
37	0.24	.901	.982	0.15	ERIMACRUS ISENBECKII
38	0.23	.001	.984	0.18	NEPTUNEA HERDS
39	G.20	.001	.985	0-14	MALACOCOTTUS KINCAIDI
40	0.19	.001	• 986	0.27	CHIONOECETES HYBRID
41	0-18	.001	.987	0.15	ANDPLOPONA FIMBRIA
42	0.18	.001	.988	0.16	LIPAFIS DENNYI
43	0.15	.001	•989	0.33	LEPTASTERIAS SP

-

(CONTINUED ON NEXT PAGE)
Table A-7 Site Group 3 (continued)

HEAN PROP. CUNUL. FREQ. CPUE OF PROP. OF (KG/HA) CPUE OF CPUE OCCURR. TAXA 44 0.14 .001 .990 0.10 SEA ANEMONE UNIDENT 45 0.11 .001 .990 0.09 OPHIUROID UNIDENT

TOTAL 168.02

* NUNBER OF HAULS-126, NEAN DEPTH=118.8N (RANGE= 66-276M)

.

Table A-8. Site Group 3A

****		*****	******	******	
	NFAN	PROP.	CUNUL.	FREQ.	
	CPUE	BF	PROP .	OF	
	(KG/HA)	CPUE (F CPUE	OCCURE	R. TAXA
****	*******	*****	******	******	********************
1	140.11	.107	.707	1.00	THERAGRA CHALCUGRANNA
2	18-61	.094	.801	0.95	CHIDNDECETES OPILIO
3	5.41	.027	.828	0.97	REINHARDTIUS HIPPOGLOSSOIDES
4	2.67	.013	.841	0.53	LYCODES BREVIPES
5	2.50	.013	.854	0.17	ZOARCIDAE
6	2.07	.010	.864	0.87	PAGUFIDAE
7	2.07	.010	.875	0.94	HIPPOGLOSSOIDES ELASSODON
8	Z.03	.010	.885	0.80	GADUS NACROCEPHALUS
9	1.92	.010	.895	0.19	PARALITHODES PLATYPUS
10	1.84	.009	• 904	0.79	LYCODES PALEARIS
11	1.77	.009	•913	0.33	STARFISH UNIDENT
12	1.43	.007	.920	0.24	LYCODES TURNERI
13	1.33	.007	.927	0.55	GORGONOCEPHALUS CARYI
14	1.30	.007	•933	0.45	CHIONOECETES BAIRDI
15	1.13	.006	• 939	0.69	RAJA SP
16	1.11	.006	•945	0.37	NEPTUNEA SP
17	1.09	.006	• 950	0.68	PANDALUS SP
18	1.01	.005	•955	0.45	A THERES THES SP
19	0.79	.004	• 95 9	0.36	HENILEPIDOTUS JORDANI
20	0.73	.004	• 963	0.10	COTTIDAE
21	0.65	.003	•966	0.28	HENITRIPTERUS BOLINI
22	0.63	.003	• 96 9	0.28	PLEURONECTES QUADRITUBERCULATUS
23	0.62	.003	•973	0.26	LINANDA ASPERA
24	0.58	.003	•975	0.21	CTENODISCUS CRISPATUS
25	9-49	.002	.978	0.48	NEPTUNEA PRIBILOFFENSIS
26	0.47	.002	• 98 0	0.39	NYOXOCEPHALUS SP
27	0.31	.002	.982	0.38	DASYCOTIUS SETIGER
28	0.29	.001	• 983	0.33	HENILEPIDOTUS SP
29	0.28	.001	• 985	0.57	ICELUS SPINIGER
30	0.24	.001	.986	0.22	GCTOPUS UNIDENT
31	0.24	.001	•987	0.24	NEPTUNEA HEROS
32	0.22	.001	.988	0.38	LEPADOP SETTA BILINEATA
33	0.21	.001	• 98 9	0.19	CHIUNDECETES HYBRID
34	0.19	.001	•990	0.21	LIPARIS DENNYI

TOTAL 198.26

* NUMBER OF HAULS- 94, HEAN DEPTH=110.5H (RANGE= 66-188H)

١.

66

Table A-9. Site Group 3Ai

.*	******	******	******	*****	******************************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE 0	F CP UE	DCC URF	R. TAXA
	*******	*****	*****	*****	***********************
1	156-12	.744	• 744	1.00	THERAGRA CHALCOGRAMMA
2	15.36	• 013	.817	0.93	CHIONOECETES OPILIO
3	4.97	.024	.841	0.96	REINHARDTIUS HIPPOGLOSSOIDES
. 4	3.80	.018	•859	0.00	LYCODES BREVIPES
5	2.57	.012	.871	0.22	ZOARCIDAE
6	2-12	.010	.881	0.74	GADUS HACROCEPHALUS
7	2.01	.010	.891	0.91	HIPPOGLOSSOIDES ELASSODON
8	1.84	.009	.899	0.71	LYCODES PALEARIS
- 9	1.83	.009	.908	0.13	PARALITHODES PLATYPUS
10	1.61	.009	.917	0.87	PAGURIDAE
11	1.54	.007	•924	0.59	CHIDNDECETES BAIRDI
12	1.52	.007	.931	0.77	RAJA SP
13	1.39	. 007	.938	0.29	STARFISH UNIDENT
14	1.30	.006	.944	0.58	GORGONOCEPHALUS CARYI
15	1.20	.006	.950	0.48	NEPTUNEA SP
16	1.17	.006	• 955	0.71	PANDALUS SP
17	1.15	.005	.961	0.61	ATHERESTHES SP
18	0.85	.004	.965	0.29	CTENODISCUS CRISPATUS
19	0.81	.004	.969	0.45	HEMILEPIDOTUS JORDANI
20	0.73	.003	.972	0.06	COTTEDAE
21	0.70	.003	.976	0.38	HENITRIPTERUS BOLINI
22	0.69	003	.979	0.58	NEPTUNEA PRIBILOFFENSIS
23	0.46	.002	. 98 1	0.13	LINANDA ASPERA
24	0.40	. 092	. 983	0.70	ICELUS SPINIGER
25	0.38	- 002	.985	0.32	MYOXOCEPHALUS SP
26	0.34	. 002	. 986	0.52	DASYCOTTUS SETIGER
27	0.32	.002	. 988	0.26	OCTOPUS UNIDENT
28	0.21	.001	.989	0.19	CHIONDECETES HYBRID
29	0.21	.001	.990	0.38	LEPIDOPSETTA BILINEATA
30	0.17	.001	.991	0.09	THALEICHTHYS PACIFICUS

TOTAL 209.91

+ NUMBER OF HAULS- 69, HEAN DEPTH=121.4M (RANGE= 80-188M)

Table A-10. Site Group 3Aia

****	*******	*****	******	*****	*********************
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	ÛF	PROP .	ØF	
	(KG/HA)	CPUE (OF CPUE	OCCUR	R. TAXA
****	*******	*****	*****	*****	**********
1	121 25	7.4.4	744	1 00	
2	5 35	····	727	7900	INERAGRA CHALGUGRANNA
2 7	- 4 35	027	4747 408	0 42	LICODES DREVILES HENTIDISTEDIIC DAI INT
و. د	10 JJ Z 87	02/	827		HTDDACIACCETACE CIACCADAN
4 6	J • U# 7 7 7	+ VZ 4 0 2 7	85A	0.59	ATHERECTNES CO
5	3 70	• VZ J 02 Z	•0JU 877	0.96	NINEREJINEJ JF Prinharnting hi pricincenting
2	2 1 4	-V2J	•07 J	₩+70 ñ 42	ALEMANNUILUS AIFFUGLUSSUIDES
4	· JALO	• UZ U	+072		CADUE NACOOCONALUS
0 0	2.00	0170	• 990		GADUS HACKUCEFNALUS Dannai ng gd
10	1 7 7	- 01J	•721	V •01	FRADALUJ JE I Voodes Baleadis
10		• • • • • •	• 7 3 2	V.00	LICUDES FALLARIS
12	1.76	.011	• 942	V.0/ 0.52	KAJA JE Cutongeceter datont
44	1 20		• 7 5 0	V.JC	CODCCNDCCDUALUC CADVI
12	1.0	0 U U O	• 736	V • 7 0	CICURGUAUGEFRALUS CARTI
14	0.97		• 764	0.30	CIENTRA CETTORES
15	0.03	.005	• YO Y	0.37	VASILUIIUS SEINGER Reatures and the accessor
10	V.07	.004	• 97 3	0.07	HEFTUNEA PRIDELUFFENSES
11	V.03	.004	• 777	V.07	PAGUNIUAL Icilia cointeen
10	U . 4 . 3	.40.3	. 900	0.92	ILELUS SPANIGER
19	40	.002	• 982	0.13	STARFISH UNIDENT
20	0.35	.002	.984	9.40	NEPTUNEA SP
21	0.29		• 985	0.33	UCTUPUS UNIDENT
22	0.15	.001	- 987	0.25	NYUXUCEPHALUS SP
23	0.15	.001	.985	0.85	BUCCINUM SP
24	0.15	.001	• 98 9	0.02	THALEICHTHTS PACIFICUS
25	0-13	.001	.990	0.17	OPHIUROID UNIDENT
26	0.13	.001	.990	0.13	TRIGLUPS SP
TOTAL	162.95	5 .	, ,		

.

* NUMBER OF HAULS- 52, MEAN DEPTH=127.7N (RANGE= 91-188N)

.

Table A-11. Site Group 3Aib

	NEAN CPUE (KG(HA)	PROP. DF	CUMUL. PROP.	FREQ. OF	. ТАХА	
****				******	\•	
					· · · · · · · · · · · · · · · · · · ·	
1	196-83	.729	.729	1.00	THERAGRA CHALCOGRANNA	
2	35.15	.130	.859	1.00	CHIONDECETES OPILEO	
3	7.75	.029	. 888	0.92	ZOARCIDAE	
4	6.12	.023	.910	1.00	REINHARDTIUS HIPPOGLOSSOIDES	
5	3.20	.012	.922	9.92	PAGURIDAE	
6	2.65	.010	•932	0.15	PARALITHODES PLATYPUS	
7	2.27	.008	.940	0.85	NEPTUNEA SP	
8	2.03	.008	.948	0.77	CHIONDECETES BAIRDI	
9	1.82	.007	• 955	0.77	GADUS NACROCEPHALUS	
10	1.72	.006	.961	0.77	STARFISH UNIDENT	
11	1.52	.006	.967	0.85	HENILEPIDOTUS JORDANI	
12	1.28	. 095	.971	0.92	HIPPOGLOSSOIDES ELASSODON	
13	1-18	.004	•976	0.62	GORGONOCEPHALUS CARYI	
14	1.15	.004	.980	0.08	COTTIDAE	
15	0.80	. 00 3	• 983	0.62	NYOXOCEPHALUS SP	
16	0.73	.003	• 986	0.46	LINANDA ASPERA	
17	0.69	.003	.988	0.69	ATHERESTHES SP	
18	0.48	.002	.990	0.46	CHIONDECETES HYBRID	
19	0.33	.001	.991	80.0	LYCODES PALEARIS	

TOTAL 270.10

•

* NUMBER OF HAULS- 13, MEAN DEPTH=102.1N (RANGE= 80-117M)

69

Table A-12. Site Group 3Aii

****	*******	******	*** * * * *	*****	******
	HEAN	PROP.	CUMUL.	FREQ.	
	CPUE	0F	PROP.	OF	
	(KG/HA)	CPUE 0	F CP VE	OCC UR	R. TAXA
****	*******	******	******	*****	***********
1	40.12	.362	.362	1.00	THERAGRA CHALCOGRANNA
2	26.27	.237	.599	1.00	CHIONDECETES OPILIO
3	8.88	.080	.680	0.76	LYCODES TÜRNERI
4	8.66	.078	.758	1.00	REINHARDTIUS HIPPOGLOSSOLDES
5	3.27	.030	.787	0.68	PLEURONECTES QUADRITUBERCULATUS
6	3.25	.029	.817	1.00	LYCODES PALEARIS
7	2.82	.025	•842	0.88	PAGURIDAE
8	2.50	• 023	.865	0.44	STARFISH UNIDENT
9	1.68	.015	.880	88.0	HENILEPIDOTUS SP
10	1.54	.014	.894	0.60	PANDALUS SP
11	1.40	.013	.906	0.72	NEPTUNEA HEROS
12	1.32	.012	.918	1.00	HIPPOGLOSSOIDES ELASSODON
13	1.21	.011	• 929	0.96	GADUS NACROCEPHALUS
14	1.10	.010	.939	0.68	LIPARIS DENNYI
15	0.94	.009	• 948	0.60	LINANDA ASPERA
16	0.93	.008	.956	0.48	GORGONOCEPHALUS CARYI
17	0.91	800.	•964	0.60	NYOXOCEPHALUS SP
18	0.75	.007	.971	0.36	PARALITHODES PLATYPUS
19	0.49	.004	.976	0.36	LEPTASTERIAS SP
20	0.47	.004	•980	0.48	RAJA SP
21	0.34	.003	- 983	0-16	PISASTER SP
22	4.22	.002	•985	0.40	LEPEDOPSETTA BILENEATA
23	0-21	.002	.987	0.32	NEPTUNEA VENTRICOSA
24	0.20	.002	• 98 9	0.16	ECHINARACHNIUS PARMA
25	0.20	.002	•990	0.24	INVERTEBRATE UNIDENT

TOTAL 110.75

* NUMBER OF HAULS- 25, HEAN DEPTH= 80.3H (RANGE= 66- 97M)

1

Table A-13. Site Group 3B

***	********	*****	******	******	*******
	MEAN	PROP.	CUMUL.	FREQ.	
	CPUE	0F	PROP.	ÛF	
	(KG/HA)	CPUE	OF CPUE	OCCURR	TAXA
***	*******	*****	******	******	*************
					· · ·
1	40.12	.334	.334	1.00	THERAGRA CHALCOGRAMMA
2	26.69	. 222	• 556	0.94	GADUS MACROCEPHALUS
3	11.40	.095	.651	0.22	GORGENDCEPHALUS CARYI
4	6.88	.057	.708	1.00	ATHERESTHES SP
5	6.87	.057	.765	0.97	HIPPOGLOSSOIDES ELASSODON
6	4.43	.037	.802	0.88	RAJA SP
7	4.28	.036	.838	0.94	CHIONDECETES BAIRDI
8	4.14	.034	.872	0.56	ZOARCIDAE
9	2.02	\$10.	.889	0.72	CHIONOECETES OPILIO
10	1.32	.011	.900	0.56	COTTIDAE
11-	0.88	.007	.907	0.28	OCTOPUS UNIDENT
12	0.87	.007	.915	0.50	HIPPOGLOSSUS STENOLEPIS
13	0.85	.007	•922	0.78	REINHARDTIUS HIPPOGLOSSOIDES
14	0.84	.007	.929	0.28	LYCODES BREVIPES
15	0.63	.005	.934	0.31	BATHYNASTER SIGNATUS
16	0.58	.005	.939	0.22	SQUID UNIDENT
17	0.57	.005	.944	0.16	PARALITHODES CANTSCHATICA
18	0.57	.005	•948	0.16	SEBASTES ALUTUS
19	0.36	.003	.951	0.59	PAGURIDAE
20	0.35	.003	.954	0.25	ERIMACRUS ISENBECKII
21	0.34	.003	.957	0.44	THALEICHTHYS PACIFICUS
22	0.34	.003	.960	0.31	NYOXCCEPHALUS SP
23	0.33	.003	.963	0.41	ANOPLOPONA FINBRIA
24	0.33	.003	•965	0.38	LEPIDOPSETTA BILINEATA
25	0.33	.003	.968	0.22	LYCODES PALEARIS
26	0.32	.003	•971	0.41	DASYCUTTUS SETIGER
27	0.30	.003	.973	0.19	HALACOCOTTUS KINCAEDI
28	0.24	.002	.975	0.28	HENILEPIDOTUS JORDANI
29	0.22	.002	.977	0.13	HEMITRIPTERUS BOLINI
30	0.21	.002	. 97 9	0.25	SEA ANEMONE UNIDENT
31	0.20	.002	.981	0.03	AGONUS ACIPENSERINUS
32	0.19	.002	~ 98 2	0.50	CHIONOECETES HYBRID
33	0.18	.901	.984	0.59	GLYPTOCEPHALUS ZACHIRUS
34	0.17	.001	•985	0.06	CYCLOPTERIDAE
35	0-17	.001	• 986	0-19	SHRINP UNIDENT
36	0.17	.001	.988	0.34	FUSITRITON OREGONENSIS
37	0.16	.001	• 98 9	0.47	GASTROPOD UNIDENT
38	0.13	.001	•990	0.16	NEPTUNEA SP

TOTAL 120.15

* NUMBER OF HAULS- 32, NEAN DEPTH=143.1H (RANGE=104-276N)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

Species Assemblages, 1979 Bering Sea Survey

Table		Page
B-l.	Site-Group 1	74
B-2.	Site Group 2 • • • • • • • • • • • • • • • • • •	75
B-3.	Site Group 2A	77
B-4.	Site Group 2Ai • • • • • • • • • • • • • • • • • • •	79
B-5.	Site Group 2Aia	81
В-б.	Site Group 2Aib • • • • • • • • • • • • • • • • • • •	82
B-7.	Site Group 2Aii	83
B-8.	Site Group 2B	84
B-9.	Site Group 2Bi	. 86
B-10.	Site Group 2Bia	. 88
B-11.	Site Group 2Bial	. 89
B-12.	Site Group 2Bia2	90
В-13.	Site Group 2Bib	. 91
B-14.	Site Group 2Bii	92
B-15.	Site Group 3	94
B-16.	Site Group 3A \ldots	95
B-17.	Site Group 3B	96

Table B-l. Site Group 1

****			******		*********************************
	NEAN	PROP.	CUNUL.	FRE Q.	
	CPUE	OF	PROP	ßF	
	(KG/HA)	CPUE D	F CP UE	OCC UR	R. TAXA
****	********	******	*****	*****	*************************
1	41.62	.460	.460	1.00	LIHANDA ASPERA
2	22.16	.245	.704	0.94	STARFISH UNIDENT
3	3.97	.044	.748	0.88	ELEGINUS GRACILIS
4	2.92	.032	.781	0.06	ASTERIAS ANURENSIS
5	2.52	.028	.808	0.91	LINANDA PROBOSCIDEA
6	1.97	.022	.830	0.42	ASCIDIAN UNIDENT
7	1.50	.017	.847	0.94	PLEUFONECTES QUADRITUBERCULATUS
8	1.41	.016	.862	0.97	MYOXOCEPHALUS SP
9	1.34	.015	.877	0.48	NEPTUNEA HERDS
10	1.30	.014	.891	0.58	THERAGRA CHALCOGRAMMA
11	1.12	.012	.904	0.21	PAGURUS TRIGONOCHEARUS
12	1.00	.011	.915	0.70	OSHERUS HORDAX
13	0.98	.011	• 926	0.79	PLATICHTHYS STELLATUS
14	0.92	.010	.936	0.64	CLUPEA HARENGUS PALLASI
15	8.69	.008	•943	0.58	PAGURUS SP
16	0.63	.007	.950	0.67	HIPPOGLOSSUS STENOLEPIS
17	0.47	.005	• 956	0.55	TELNESSUS CHEIRAGONUS
16	0.39	.004	•960	0-64	GYMNOCANTHUS SP
19	0.36	.004	• 964	0.73	AGONUS ACIPENSERINUS
20	0.36	.004	•968	0.61	PAGURUS ALEUTICUS
21	0.31	.003	.971	9.39	CHIONOECETES OPILIO
22	0.30	.003	.975	0.33	LEPIDOPSETTA BILINEATA
23	0.24	.003	•977	0.67	NEPTUNEA VENTRICOSA
24	0.22	.002	.980	0.03	LUNPENUS NACKAYI
25	0.19	.002	• 982	0.03	OCCELLA DODECAEDRON
26	0-19	.002	• 984	9.82	HEXAGRAHNOS STELLERI
27	0.16	.002	• 986	0.09	THALEICHTHY'S PACIFICUS
28	0.15	.002	.987	0.12	SCYPHOZOA
29	0.15	.002	• 98 9	0.21	GORGONDCEPHALUS CARYI
30	0.10	.001	.990	0.39	ALCYUNAREA

TOTAL 90.53

~

* NUNBER OF HAULS- 33, NEAN DEPTH= 25.7% (RANGE= 15- 38M)

Table B-2. Site Group 2

****	******	*****	******	*****	**************************
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	ÛF	PROP .	OF	
	(KG/HA)	CPUE	OF CPUE	OCCURF	Ro TAXA
****	*******	*****	****	*****	**********
1	48.58	• 248	-248	0.97	THERAGRA CHALCOGRAMMA
2	32.68	.167	.415	0.64	LINANDA ASPERA
3	24.97	•128	•243	0.68	CHIONDECETES OPILIO
4	19.14	-098	.640	0.96	GADUS NACROCEPHALUS
5	6.84	.035	•675	9.36	STARFISH UNIDENT
6	5.05	•026	.701	0.53	PLEURONECTES QUADRITUBERCULATUS
7	4-97	.021	•722	9.58	PARALITHODES CANTSCHATICA
8	3.67	.019	-741	9.18	ZUARCIDAE
y	3.33	.017	•758	9.15	HEMILEPIDOTUS PAPILIO
10	3-11	-016	.//4	9.72	REINMARDIIUS HEPPUGLUSSUIDES
11	2.96	• 917	./89	0.39	NTUXULEPHALUS SP
12	2.94	•015	.804	0.61	PAGUNIDAL
13	2.61	•012	.817	0.50	LEPEDUP SEITA BELENEATA
1.5	2.49	• 01 3	018.	0.10	ADIENIAD ANUKENDID
14	1 30	• U LU	•04U	0.00	HIPPUGLUSSUIDES ELASSUDUN
17	1.60	• 44 y	•040 • 057	0.97	ATTLACJIECJ JE
10	1 60		•071	0.10	AFFIUREA AFRUS
10	1 55	• UU 9	• 0 0 0 8 7 1	0.17	LICULS BREFERES
20	1 4 2 8	4000 AD7	9074 88'1	0 1 1	TENDICO FALLARIO
21	1.42	. 007	100- 0 a a	0.11	CICHUDIGCUG CRIGENIUG
22	1.40	- 007	. 896	0.06	ANDING CONCOLORNI
23	1.36	. 007	. 9.73	0.50	CHINNEFFICS DAIDNI
24	1.24	- 006	-909	0.37	GARGENACEPHALUS CARYE
25	1-02	.005	.914	0.43	RAMA SP
26	Q. 97	.005	.919	0.09	PARALITHODES PLATYPHS
27	0.87	.004	.924	0.04	SEBASTES ALUTUS
28	0.84	.004	- 928	0-29	MENILEPIONTUS JORDANI
29	0.78	.084	.932	0.19	OCTOPUS UNIDENT
30	0.75	.004	.936	0.35	HIPPOGLOSSUS STENOLEPIS
31	0.68	.003	.939	0.04	HALOCYNTHIA AURANTIUN
32	0.64	.003	.943	0.11	ANOPLOPONA FINBRIA
33	0.57	.003	.946	0.11	PAGURUS TRIGONOCHEIRUS
34	0.54	.003	-948	0.09	ASCIDIAN UNIDENT
35	0.48	.002	.951	0.13	HEMITRIPTERUS BOLINI
36	0.47	.002	•953	0.16	LEPTASTERIAS SP
37	0.46	.002	•955	0.19	NEPTUNEA PRIBILOFFENSIS
38	0-44	.002	• 958	0.26	LINANDA PROBUSCIDEA
39	0.42	• D0Z	•960	0.07	LIPARIS_SP
40	0.40	.002	.962	80.0	ELEGINUS GRACILIS
41	0.36	.002	•964	0.13	PORIFERA
42	0.35	.002	• 965	0-19	NEPTUNEA VENTRICOSA
43	0-32	. 002	• 967	0.48	AGUNUS ACIPENSERINUS

(CONTINUED ON NEXT PAGE)

Table B-2. Site Group 2 (continued)

****	*******	*****	******	*****	**********
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	DF	PROP.	OF	
	(KG/HA)	CPUE	OF CPUE	OCCUR	R. TAXA
****	*******	*****	******	*****	**********************
44	0.29	.001	.969	0.34	PANDALUS SP
45	0.29	.001	. 97 0	0.22	BUCCINUN SP
46	0.28	.001	.972	0.09	CYCLOPTERIDAE
47	0.26	.001	.973	0.28	SEA ANEMONE UNIDENT
48	0.25	001	.974	0.29	GYMNUCANTHUS SP
49	0-24	.001	.975	0.23	CHIONOECETES HYBRID
50	0.24	.001	-977	0.41	HYAS SP
51	0.23	. 001	•978	0.27	ERINACRUS ISENBECKII
52	0.23	.001	. 979	0.04	ZAPRORA SILENUS
53	0.19	.001	.980	0.02	INVERTEBRATE UNIDENT
54	0.18	.001	.981	0.09	PAGURUS SP
55	0.17	.001	•982	0.15	SCYPHOZOA
56	0.17	.001	.983	0.03	CPHIUROID UNIDENT
57	0.16	.001	• 983	0.10	HOLOTHUROIDEA UNIDENT
58	0.16	.001	.984	0.12	STRONGYLOCENTROTUS DROEBACHIENSIS
59	0.15	.001	.985	0.16	THALEICHTHYS PACIFICUS
60	0.15	.001	• 986	0.19	NEPTUNEA LYRATA
61	0.14	. 901	.987	0.23	CLUPEA HARENGUS PALLASI
62	0.14	.001	.987	0.02	HALOCYNTHIA SP
63	0.13	.001	. 988	0.01	INVERTEBRATE EGGS UNIDENT
64	0.12	.001	.989	0.25	1 CELUS SP
65	0.11	.001	• 989	0.05	BOLTENIA SP
66	0.10	.001	.990	0.08	PLATICHTHYS STELLATUS
67	0-10	.000	.990	0-14	BATHYMASTER SEGNATUS

TOTAL 195.77

* NUMBER OF HAULS-468, HEAN DEPTH= 87.4N (RANGE= 11-274H)

ن د Table B-3. Site Group 2A

***	********	*****	******	******	************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	ÛF	PROP .	OF	· · · · · ·
	(KG/HA)	CPUE	OF CPUE	OCCURA	R. TAXA
***	********	*****	******	******	******************
	70 77	453	967	• • •	
1	10.13	• 231	•231	1-00	LINARUA ASPEKA
2	43.47	• 165	•423	0.94	THENAGNA CHALCUGNANAA
3	24+03	• 0 9 0	• 2 7 3	0.50	GADAS MACHULEFRALUS
4	23.31	• V00	• 770	0.50	STADETCH UNTRENT
2	10 27	• VJZ A 27	-071 -071	0.J0 A 7.9	DI FUDANECTE C ANANDA TUDEDCIN ATHS
7	10.25	101	●000 725	0 21	ACTEDIAC ANDRENCIC
•	J + J J G A Z	030	760	0 64	DADAA ITHOOSS CANTSSUATISA
9	7.57	.028	-788	0.89	IFPINDPSETTA RILINEATA
10	7.36	. 027	. 815	0.65	PACHERAR
11	6_36	- 023	_ 878	0_82	NYAYACEPHALUS SP
12	40.5	.014	- 852	0.06	PARALTTHODES PLATYPHS
13	2.57	. 80.9	.861	0.31	NEPTUNEA HEROS
16	2.55	.009	-871	0.41	GASTROPOD UNIDENT
15	2.37	.009	.879	0.05	STRONGYLOCENTROTUS DROEBACHIENSIS
16	2.15	- 908	.887	0.62	CHIGNOECETES BAIRDI
17	2.13	.008	-895	0.25	HENILEPEDOTUS JORDANI
18	1.80	. 007	- 901	0.17	SEA ANENONE UNIDENT
19	1.65	.006	.907	0.08	HALOCYNTHIA AURANTIUM
20	1.63	.006	.913	0.74	HIPPOGLOSSOIDES ELASSODON
21	1.56	.006	-919	0.39	LYCODES PALEARIS
22	1.45	.005	.924	0.59	REINHARDTIUS HIPPOGLOSSOIDES
23	1.37	.005	• 929	0.45	HIPPOGLOSSUS STENOLEPIS
24	1.35	.005	•934	0.43	ERINACRUS ISENBECKII
25	1-20		.939	0.51	LINANDA PROBOSCIDEA
26	1.12	.004	-943	0.13	ASCIDIAN UNIDENT
27	0.99	.004	• 946	0.31	GORGONDCEPHALUS CARYI
28	0.92	.003	a 950	0.12	PAGURUS TRIGONOCHEIRUS
29	0.92	. 00 3	• 95 3	0.04	NYTILIDAE
30	0.88	.003	• 956	0.43	GYNNOCANTHUS SP
31	0.83	. 003	- 959	0.62	HYAS SP
32	0.82	.003	•962	0.86	AGONUS ACIPENSERINUS
33	G. 81	• 90 3	• 965	0.14	ELEGINUS GRACILIS
34	0.54	.002	<u>。967</u>	0.17	HOLOTHURGIDEA UNIDENT
35	0.53	.002	. 96 9	0.12	PORIFERA
36	0.51	.002	-971	0.06	LEPTASTERIAS SP
37	0.49	.002	.973	0.25	CHIONOECETES HYBRID
38	0.45	.002	• 974	9.25	RAJA SP
59	0.44	.002	.976	0.19	SUYPHOZOA
40	0.42	• 002	•977	8.25	REPTUNEA VENTRICUSA
41	0.41	.001	•979	0.50	ATHERESTNES SP
42	4.41	.001	• 780	4.1/	REPIUNEA LINATA
43	N - 20	- 401	« YOZ	0.04	THATHIFALF ANTONATENI

Table B-3. Site Group 2A (continued)

***	********	*****	******	*****	* * * * * * * * * * * * * * * * * * * *
	MEAN	PROP.	CUNUL.	FREQ.	· · · · ·
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE D	OF CPUE	OCCUR	R. TAXA
***	********	*****	******	*****	* * * * * * * * * * * * * * * * * * * *
44	0.35	. 001	.983	0-07	PAGURUS SP
45	0.32	.001	.984	9.07	NEPTUNEA PRIBILOFFENSIS
46	0.28	.001	• 985	0.03	HALOCYNTHIA SP
47	0.28	.001	.986	0.33	CLUPEA HARENGUS PALLASI
48	0.26	.001	.987	0.06	ZOARCIDAE
49	0.24	.001	.988	0.08	HENILEPIDOTUS PAPELIO
50	0.24	.001	.989	0.04	OCTOPUS UNIDENT
51	0.23	.001	.990	0-15	PLATICHTHYS STELLATUS
52	0.22	.001	.991	0.09	BOLTENIA SP

TOTAL 274.69

* NUNBER OF HAULS-236, NEAN DEPTH= 56.6N (RANGE= 11+ 93N)

Table B-4. Site Group 2Ai

1

****	*******	******	******	******	***************
	NEAN	PROP.	CUNUL.	FRE Q.	
	CPUE	30	PROP.	OF	. ·
•	(KG/HA)	CPUE O	FCPUE	OCCURR	Co TAXA
***	*******	******	*****	******	*****************
1	86.62	- 301	. 501	1.00	LENANDA ASPENA
2	52.92	.184	-485	0.95	THERAGNA CHALCUGRAMMA
3	30.93	-108	• 593	0.96	GADUS MACHULEPHALUS
4	18.07	.063	• 636	0.50	STARFESH UNIVENI
5	15.40	.054	·/Uy	0.57	CHAURDELEIES UFALIU
5	13.41	.04/	• ∢ ⊃b	0.00	PANALI INUES CARISCHAILLA
1	12.34	o U44	•0UU •050		FLURUNELICS VURUNEIUDERCULNIUS
8	1.00	• 427	C20.	0.64	LEFINUFSELLA DILIREALA
	2.20	- 41 4	•044 86 3	0.20	FAGURIUAL Actestae Aminefacte
10	3.21	• • • • • •	+002∠ 90 ∩	VoCV A PA	MAUAUCEDNYI NE ED Moientro Bunnended
12]a∠i 7 97	- 910 - 910	a009 902	10 4 2	CASTGOROD HNIDENT
17	J. 67	011	407C 0A2	009C	NEDTLNEA HEDRE
14	J•VJ 2 05	007		0.24	NTPPACIASSAINES FLASSADAN
15	1 81	906	015	0.28	AYCODES PALEARES
15	1 2 7	006		0.54	AT NANDA PROBOSCIOFA
17	1.57	.005	.927	0.60	CHIONOFCETES BAIRDI
18	1.56	. 095	.932	0.08	HALOCYNTHRA AURANTIUN
19	1.48	. 005	.938	0.45	HTPPGGLOSSUS STENDLEPES
20	1.37	.005	. 942	0.13	ASCIDIAN UNIDENT
21	1.20	.004	-946	0.33	GORGENOCEPHALUS CARYI
22	1.14	.004	.950	0.13	PAGURUS TREGONOCHEIRUS
23	1.13	004	.954	0.58	REINHARDIIUS HIPPOGLOSSOIDES
24	0.99	.003	.958	0.14	ELEGINUS GRACILIS
25	0.75	.003	.960	0.87	AGUNUS ACIPENSERINUS
26	0.68	.002	.963	0.19	SCYPHOZOA
27	0.63	.002	.965	0.12	PORIFERA
28	0.59	.002	.967	0.27	ATHERESTHES SP
29	0.52	.002	. 969	9.22	CHIONOECETES HYBRID
30	0.52	° 005	.971	0.25	RAJA SP
31	0-47	.002	.972	0.04	INVERTEBRATE UNIDENT
32	0.46	.002	.974	0.40	GYNNOCANTHUS SP
33	0.44	.002	。975	0.07	PAGURUS SP
34	0.44	.002	•977	0.21	HENILEPEDOTUS JORDANI
35	0.42	.001	.978	0.05	ZOARCIDAE
36	0.40	.091	•980	9.14	NEPTUNEA LYRATA
37	0.35	.001	.981	0.07	NEPTUNEA PRIBILOFFENSIS
38	0.34	.001	.982	0.17	HOLOTHUROIDEA UNIDENT
39	0.34	.001	- 983	9.35	CLUPEA HARENGUS PALLASI
40	0.34	.001	.985	0.04	HALOCYNTHIA SP
41	9.33	.001	.986	0.24	NEPTUNEA VENTRICOSA
42	0.33	.001	.987	0.40	ERLMACRUS I SENBECKII
43	0.31	.001	•988	0.16	PLATACHTHYS STELLATUS

(CONTINUED ON NEXT PAGE)

Table B-4. Site Group 2Ai (continued)

```
      NEAN
      PROP. CUNUL. FREQ.

      CPUE
      OF
      PROP.
      OF

      (KG/HA)
      CPUE
      GF
      CPUE
      OCCURR.
      TAXA

      44
      0.30
      .001
      .989
      0.05
      LEPTASTERIAS
      SP

      45
      0.26
      .001
      .990
      0.10
      BOLTENIA
      SP

      46
      0.23
      .001
      .991
      0.13
      THALEICHTHYS
      PACIFICUS

      IOTAL
      287.48
```

* NUMBER OF HAULS-223, NEAN DEPTH= 55.6N (RANGE= 11- 91H)

Table B-5. Site Group 2Aia

****	*******	*****	******	** ** **	******
	NEAN	PROP.	CUMUL.	FREQ.	
	CPUE	OF	PROP.	ØF	
	(KG/HA)	CPUE	OF CPUE	OCCURI	Ro TAXA
****	********	*****	******	*****	******************
1	84.72	. 276	.276	1.00	LINANDA ASPERA
2	73.96	. 241	.517	1.00	THERAGRA CHALCOGRAMMA
3	20.13	. 966	.582	0.89	CHIONDECETES OPILIO
4	20.02	.065	.648	0.61	PARALITHODES CANTSCHATICA
5	19.83	.965	.712	0.99	GADUS HACROCEPHALUS
6	17.97	.059	.771	0.95	PLEURONECTES QUADRITUBERCULATUS
7	11.54	. 038	.808	0-39	STARFESH UNEDENT
8	8.58	.028	. 836	0.64	PAGURIDAE
9	7.43	.024	. 86 0	0.81	NYOXOCEPHALUS SP
10 .	4-91	.016	.876	0.49	GASTROPOD UNIDENT
11	4.17	.014	.890	0.40	NEPTUNEA HEROS
12	2.54	. 008	. 898	0.22	ASTERIAS ANURENSIS
13	2.42	. 008	.906	0.65	LYCODES PALEARIS
14	2.26	.007	.913	0.83	LEPIDOPSETTA BILINEATA
15	2.24	.007	.921	0.71	CHIONOECETES BAIRDI
16	2.16	.007	. 92 8	0.13	HALOCYNTHIA AURANTIUN
17	2.15	.007	.935	0.90	HIPPOGLOSSOIDES ELASSODON
18	1.71	.006	-940	0.53	GORGONOCEPHALUS CARYI
19	1.60	.005	.945	0.13	ASCIDIAN UNIDENT
20	1.56	. 005	.951	0.89	REINHARDTIUS HIPPOGLOSSOIDES
21	1.39	.005	• 955	0.19	PAGURUS TRIGONOCHEIRUS
22	9.81	.003	.958	0-21	SCYPHOZOA
23	9.79	. 00 3	• 960	0.09	LEPTASTERIAS SP
24	0.77	. 00 3	.963	0.84	AGONUS ACIPENSERINUS
25	0.75	. 002	•965	0.02	INVERTEBRATE UNIDENT
26	0.72	.002	.968	0.42	RAJA SP
27	0.72	.002	.979	0.38	CHIONOECETES HYBRID
28	0.70	.002	.972	0.09	ZOARCIDAE
29	0.64	.092	.974	0.19	NEPTUNEA LYRATA
30	0.58	<u> </u>	.976	0.10	NEPTUNEA PRIBILOFFENSIS
31	0.48	.002	-978	0.09	PAGURUS SP
32	0.47	.002	- 989	0.24	LIMANDA PROBOSCIDEA
33	0.42	.001	.981	0.34	ATHERESTHES SP
34	0.41	.901	•982	0.09	ELEGINUS GRACILIS
35	0.39	.001	•983	0.48	ERENACRUS I SENBECKII
36	0.38	.001	.984	9.28	HEHILEPIDOTUS JORDANI
37	0.38	.001	- 986	0.35	NEPTUNEA VENTRICOSA
38	0.36	.001	.987	0.01	OPHIURA SARSI
39	0.34	.001	. 988	0.05	HALDCANTHIA SP
40	0.34	.001	- 989	0.05	PORIFERA
41	0.29	.001	•990	0.03	ECHINARACHNIUS PARMA

TOTAL 307.06

* NUNBER OF HAULS-129, NEAN DEPTH= 65.5H (RANGE= 40- 91M)

Table B-6. Site Group 2Aib

****		******	******	*****	*****************************
	HEAN	PROP	CUNUL.	FREQ.	
	CPUE	OF 1	PROP	DF	
	(KG/HA)	CPUE D	FCPUE	OCC URI	R. TAXA
****	******	******	******	******	**********************
1	91-08	. 404	-404	1.00	LINANDA ASPERA
2	57 . 21	-254	.658	0.91	GADUS NACROCEPHALUS
3	18.24	.081	.739	0.65	STARFISH UNIDENT
4	15.10	. 967	.806	0.97	LEPIDOPSETTA BILINEATA
5	8.10	.036	.842	0.17	ASTERIAS AMURENSIS
6	4.88	.022	.864	0.69	PARALITHODES CANTSCHATICA
7	4.75	.021	.885	0.95	LINANDA PROBUSCIDEA
8	3.56	.016	. 901	0.87	THERAGRA CHALCOGRANMA
9	3.38	.015	.916	0.85	HIPPOGLOSSUS STENOLEPIS
10	2.63	.012	.927	0.57	PLEURDNECTES QUADRITUBERCULATUS
11	2.43	.011	.938	0.52	HIPPOGLOSSOIDES ELASSODON
12	1.88	.008	.946	0.88	HYOXOCEPHALUS SP
13	1.22	.005	.952	0.22	ELEGINUS GRACILIS
14	1.09	.005	.957	0.72	GYNNOCANTHUS SP
15	1.04	. 905	.961	0.18	ATHERESTHES SP
16	0.81	.004	. 965	0.20	PORIFERA
17	0.67	.003	.968	0.36	PLATICHTHYS STELLATUS
18	0.66	.003	.971	0.90	AGONUS ACIPENSERINUS
19	0.64	.003	.974	0.19	NEPTUNEA HEROS
20	0.48	.002	.976	0.27	HOLOIHUROIDEA UNIDENT
21	0.47	.092	• 978	0.17	SCYPHOZOA
22	0.41	.002	.980	0.46	CHIONDECETES BAIRDI
23	0.36	.002	• 98.1	0.21	THALEICHTHYS PACIFICUS
24	0.35	.002	• 98 3	0.65	PAGURIDAE
25	0.34	.002	• 984	0.30	ERIHACRUS ISENBECKII
26	0.29	.901	•986	0.06	INVERTEBRATE UNIDENT
27	0.29	.001	• 987	0.12	HENILEPIDOTUS JORDANI
28	0.27	.001	• 988	0.05	PAGURUS SP
29	0.26	.001	• 98 9	0.09	NEPIUNEA VENTRICOSA
30	0.24	.001	.990	0.48	CLUPEA HARENGUS PALLASI

TOTAL 225.31

+ NUNBER OF HAULS- 94, HEAN DEPTH= 42.0N (RANGE= 11- 68M)

1

Table B-7. Site Group 2Aii

* * * *			******	*****	**************
	NEAN	PROP	CUMUL.	FREQ.	
	CPUE	ÛF	PROP	DF	
	(KG/HA)	CPUE 0	F CP UE	OCC URE	R. TAXA
****		*****	******	****	************************
1	37 . 94	- 154	-154	1.00	GADUS HACROCEPHALUS
2	36.71	.149	. 303	1.00	CHIQNOECETES OPILIO
3	22.47	.091	.394	0.08	HALOCYNTHIA AURANTIUN
4	22.36	.091	.485	1.00	HENILEPIDOTUS JORDANI
5	15.86	. 964	.549	0.54	NYOXOCEPHALUS SP
6	12.06	.049	.598	80.0	NETRIDIUN SENILE
7	11.09	.045	.643	0.85	THERAGRA CHALCOGRANNA
8	10.78	.044	.687	0.77	PARALITHODES PLATYPUS
9	8.96	.036	.723	1.00	LINANDA ASPERA
10	8.90	•036	.759	0.31	ASTERIAS AMURENSIS
11	8.82	.036	.795	0.85	PAGURIDAE
12	7.95	.032	.827	1.00	LEPIDOPSETTA BILINEATA
13	6.33	.026	.853	0.85	ERIMACRUS ISENBECKII
14	4.91	.020	.873	1.00	CHIONDECETES BAIRDI
15	.4.24	.017	.890	0.54	SEA ANEMONE UNIDENT
16.	3.52	014	.904	0.62	HYAS SP
17	3.51	.014	.918	0.15	STRONGYLOCENTROTUS DROEBACHIENSIS
18.	2.52	.010	•929	0.92	GYMNOCANTHUS SP
19	2.43	.010	•938	0.38	BERINGIUS BERINGII
20	1.67	.007	.945	9.17	AGONUS ACIPENSERENUS
21	1.33	.005	.951	0.23	NYTILIDAE
22	1-19	.005	• 955	0.15	LEPTASTERIAS SP
23	1.04	.004	.960	0.77	REINHARDTIUS HIPPOGLOSSOLDES
24	0.98	.004	.964	0.08	TEALIA SP
25	0.90	.004	.967	0.15	CHLANYS SP
26	0.77	.003	.970	0.54	STARPESH UNIDENI
27	0.77	.003	•974	0.54	STERNMERLES GONDKIIDBERC OFVID
28	0.64	. 993		0.54	PARALATHUDES CANTSUNATECA
29	0.60	.902	•979	9.69	HIPPUGLUSSUIDES ELASSUDUM
30	0.59		-981	0.59	NEPIUNEA LIKAIA
51	0.50	. 002	• 98.5	V•24	ATLENFOOD SICHAFLES
32	0.46	.002	• 785	0.15	ULIUTUS UNLUENI Molothupotoca untocht
12	0.59	. 092	• 799	U.13	RULUIRURURULR URAULRI Hemrichtroths Dartisc
54	0.51	.001	• Y88	4.51	ATURECETHEC CD
32	V•20	- 4U1	• 707 00A	U•[] A 60	AINLELJINLJ JF Fuinbasfetes uvrdin
30	V-C/	• • • • •	• 770	14407 A 74	TDICINDS SO TONIO
21	Ve20	° na T	• 7 7 1	A *3 T	INEQUUED DE

TOTAL 246.51

* NUNBER OF HAULS- 13, NEAN DEPTH= 73.7H (RANGE= 48- 93H)

Table B-8. Site Group 2B

****	*******	*****	*****	*****	**********************
	MEAN	PROP.	CUMUL.	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE C	F CP UE	OCCURF	R. TAXA
****	*******	*****	*****	******	*****************
1	63.41	.344	- 344	1.00	THERAGRA CHALCOGRANNA
2	29.40	.160	.504	0.79	CHIDROECETES OPILIO
3	16.93	• 392	، 596	0.95	GADUS NACROCEPHALUS
4	12-12	• 066	.661	0.10	PARALITHODES CANTSCHATICA
5	5.21	•028	•690	0.32	ZOARCIDAE
6	4.33	.024	.713	0.86	REINHARDTIUS HIPPOGLOSSOIDES
7	4.14	• 022	.736	0.26	LINANDA ASPERA
8	4.02	.022	•757	0.21	HEMILEPIDOTUS PAPILIO
9	3.19	.017	.115	0.13	PURAFERA
10	2.99	-016	•791	0.57	CHIURUECEIES BAIKUI
11	2.65	.014	.805	0.8/	HIPPUGLUSSUIDES ELASSUDUN
12	2.40	• 41 5	.010	0.01	AIRENESIRES SF
13	2.21	• 012	.030	0.70	FICARE LAFEALES
14	1.07	-011	•041 951	V-30 0 2 R	LILUULD DALIIFLD 1 Edind setta riijneata
10	1 86	• VI V	000L 94.1	V+ 20 0 27	DEFRAUE JEITA DECEMENTA DEFRAMENTES ANAMPITUREPON ATHS
10	1 68	• U U O	800 L 87 A	0.59	PECHAGREDICS WORDATIODERCOLATOS
19	1 40	• UU 7	*0 (V . 8.7 0	0.11	LYCODES CONCOLOR
10	1.57	. 00 A	. 888	0.22	ATENADISCUS CRISPATUS
17	1 51	0000	2000	0.61	
21	1.46	.008	.904	0.34	NYOXOCEPHALUS SP
22	1.27	.007	.911	0.23	HTPPOGLOSSUS STENOLEPTS
23	1.13	. 006	.917	0.16	NEPTUNEA HEROS
24	1.09	. 006	923	0.43	GORGENDCEPHALUS CARYI
25	1.03	.006	.928	0.49	GASTROPOD UNIDENT
26	0.99	.005	. 934	0.22	STARFISH UNIDENT
27	0.98	.005	.939	0.07	SEBASTES ALUTUS
28	0.91	.005	.944	0-20	ANOPLOPONA FIMBRIA
29	0.87	.005	• 949	0.35	OCTOPUS UNIDENT
30	0.72	.004	.952	0.12	PARALITHODES PLATYPUS
31	0.69	.004	. 956	0.33	HENILEPIDOTUS JORDANI
32	0.64	.003	.960	0.26	HEMITRIPTERUS BOLINI
33	0.55	.003	• 96 3	0.31	NEPTUNEA PRIBILOFFENSIS
34	0.49	.003	.965	0.11	CYCLOPTERIDAE
35	0-45	.002	· 968	0.11	LIPARIS SP
36	0.42	• 002	.970	0.26	LEPHASIERIAS SP
57	0.38	.002	•97Z	U.21	NEFILINEA LIKAIA
10 70	U. 56	• 902 • • • • •	• 7/4 076	Vab3 A 11	EVANUTION OL
77	V-37	•992 802	e 7€ 0 07₽	V•11 A 77	SUFFRUZUA Buffruzua Buffruzua
4) U /. 1	V•33	.002	•7[0 070	0.12	NTERTAS ANIDENCIS
41	0.20 0.28	.002	9747 _ 981		PAGURUS TRIGONOCHFIRUS
43	0.26	.001	.982	0.14	NEPTUNEA VENTRICOSA

.

(CONTINUED ON NEXT PAGE)

.

Table B-8. Site Group 2B (continued)

```
NEAN PROP. CUNUL. FREQ.
    CPUE OF PROP. OF
   (KG/HA) CPUE OF CPUE OCCURR. TAXA
0.26 .001 .984 0.06 ZAPRORA SILENUS
44
     0.23 .001 .985 0.26 FUSITRITON OREGONENSIS
45
46
     0.17 .001 .986 0.07 OPHIUROID UNIDENT
     0.16 .001 .987 0.40 SEA ANEMONE UNIDENT
0.15 .001 .988 0.01 INVERTEBRATE EGGS UNIDENT
47
48
     0.13 .001 .988 0.50 ICELUS SP
49
     0.13 .001 .989 0.28 BATHYMASTER SIGNATUS
50
     0.12 .001 .990 0.20 HYAS SP
51
   0.11 .001 .990 0.19 THALEICHTHYS PACIFICUS
52
```

TOTAL 184.25

* NUMBER OF HAULS-227, MEAN DEPTH=120.2H (RANGE= 30-274M)

Table B-9. Site Group 2Bi

***	********	******	*******	******	******
	HEAN	PROP.	CUAUL.	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE	OF CPLE	OCCUR	R. TAXA
	*******	*****	*****		*********************
1	74.60	.379	.379	1.00	THERAGRA CHALCOGRAMMA
2	31.88	. 162	.541	0.76	CHIONDECETES OPILIO
3	19.08	.097	.638	0.96	GADUS NACROCEPHALUS
4	13.46	.068	.706	0.11	PARALITHODES CANTSCHATICA
5	5.37	.027	.733	0.85	REINHARDTIUS HIPPOGLOSSOIDES
6	4.54	.023	.756	0.24	LIMANDA ASPERA
7	3.75	.019	.775	0.26	ZOARCIDAE
8	3.47	.018	.793	0.12	PORIFERA
9	3. 32	. 017	.810	0.63	CHIONDECETES BAIRDI
10	3.13	.016	.826	0.88	HIPPOGLOSSOIDES ELASSODON
11	3.02	.015	-841	0.49	LYCODES PALEARIS
12	2.67	.014	.854	0.57	ATHERESTHES SP
13	2.16	.011	.865	0.42	LYCODES BREWIPES
14	2.12	.011	.876	0.28	LEPIDOPSETTA BILINEATA
15	1.74	.009	.88 5	0.25	CTENDDESCUS CRISPATUS
16	1.70	.009	.894	0.22	PLEURONECTES QUADRATUBERCULATUS
17	1.68	.009	.902	0.67	RAJA SP
18	1.44	.007	.910	0.60	PAGURIDAE
19	1-41	.007	.917	0.26	HIPPUGLUSSUS STENDLEPIS
20	1.13	.006	•922	0.46	GASTRUPUD UNIDENT
21	1.12	.005	.928	0.39	GURGENUCEPHALUS CARTE
22	1.09	.005	•934	0.08	SEBASIES ALUIUS
25	1.03	.005	• 7 3 7	0.50	ATUXULEPHALUS SP
24	1.01	• 007	• 744	0.17	PIERT CLARKER
25	1.01	.000	• 747	V=22	ARUPLUPURA FIRDRIA
20	0.93	-003 -001	• Y) 4 05 9	0.37	UCTUPUS UNIDENT
21	0.71	• V9 4	• 730	V.31	HENTITIONS DOLINT
20	U•41	.004	• 701	₩•C7 0 00	NENTINEA HEDRO
27	0.07	4 U U 4 0 0 7	6 70 J 06 B	0 34	NEFIGNER GERUJ Medtimer detreti geerste
21	V. DZ	•00J	071	0.06	CALINDIEDAUVE Melinmer ikspienieksza
31	9.02 0.60	•00J 777	9781 974	N 11	LENTIEDTATUS DADTITA
22	0.43	.002	.976	0.23	NEPTINEA IYRATA
22	л. 39	. 002	.978	D-12	SCYPH070A
35	0.35	- 002	. 980	0.60	PANDAL HS SP
36	0.34	- 002	982	0.27	BUCCANUM SP
37	0.32	.002	. 983	0.14	ASTERIAS ANURENSIS
38	0.31	.002	.985	0.21	LEPTASTERIAS SP
39	0.29	.001	. 986	0.06	ZAPRORA SILENUS
40	0.26	.001	.988	0.30	FUSITRITON OREGONENSIS
41	0.17	.001	. 989	0.40	SEA ANENONE UNIDENT
42	0.16	.001	.989	0.05	OPHIUROID UNIDENT
43	0.15	.001	.990	0.55	ICELUS SP

(CONTINUED ON NEXT PAGE)

~

Table B-9. Site Group 2Bi (continued)

MEAN PROP. CUMUL. FREQ. CPUE OF PROP. OF (KG/HA) CPUE OF CPUE OCCURR. TAXA

44 0.14 .001 .991 0.32 BATHYMASTER SEGNATUS

TOTAL 196.97

* NUMBER OF HAULS-202, MEAN DEPTH=127.3N (RANGE= 59-274N)

87

Table B-10. Site Group 2Bia

*****	*******	*****	******		
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	OF	· · · · ·
	(KG/HA)	CPUE	OF CPUE	OCCURI	R. TAXA
*****	******	****	******	*****	********************
1	75.51	.377	-327	1.00	THERAGRA CHALCOGRAMMA
2	36.57	.183	.560	0.87	CHIONGECETES OPILIO
3	15.17	.076	. 635	0.14	PARALITHODES CAMTSCHATICA
4	10.01	.050	•685	0.97	GADUS NACROCEPHALUS
5	6.71	.033	.719	0.92	REINHARDTIUS HIPPOGLOSSOIDES
6	5.15	.026	.744	0.31	LINANDA ASPERA
7	4.32	.022	•766	0.34	ZOARCIDAE
8	3.94	.020	.786	0.63	CHIONOECETES BAIRDI
9	3.89	.019	-805	0.11	PORIFERA
10	3.86	.019	-824	0.96	HIPPOGLOSSOIDES ELASSODON
11	3.56	.018	.842	0.58	LYCODES PALEARIS
12	2.65	.013	.855	0.50	LYCODES BREVIPES
13	2.23	.011	•867	0.28	LEPEDOP SETTA BILINEATA
14	1.96	.010	.876	0.29	CTENODISCUS CRISPATUS
15	1.93	.010	. 886	0.29	PLEURONECTES QUADRITUBERCULATUS
16	1.86	.009	. 895	0.75	RAJA SP
17	1.77	.009	-904	0.62	PAGURIDAE
18	1.55	.008	-912	0.31	HIPPOGLOSSUS STENOLEPIS
19	1.48	.007	-919	0.52	ATHERESTRES SP
20	1.30	.007	.926	0.47	GURGGNUCEPHALUS CARYI
21	1.28	.006	-932	0.54	GASTRUPUD UNADENT
22	1.21	.005	•938	0.27	ANUPLUPURA FINUNIA
23	1.15	.006	944	0.15	STARFISH UNIDENT
24	9.92	.005	• 948 057	0.35	NTURULEMALUS SP
25	0.90	.004	• YD 5	0.41	UCTUPUS UNIDENT
26	9.81	.004	• 7 2/	0-41	NEPTUNEA PRIBILUFFENSAS
21	V • O V	- VU4 007	• 90 L	Veli	REFIUNEA HERUS
20	V. D.Y		• 704 069	0.14	- CILUFILAL - HENDIERIDAL
27	0.00	- UUJ 2 00	6700 071	0 21	HEMILEPINGTHE INPRANT
21	V - 9 J 0 5 7	- 00 J	074	0 66 Veji	DANDALIIC CD
37	V.JJ A 52	2 N N	076 076	0.00	FRADREGJ JF Acteriae Anndencie
22	N 52	- 00 J	.070	A 29	NEDTIMEA IVDATA
JJ 74	0 40	002	0767 . 981	0.33	RUCCINUM SP
75	0.38	.002	.983	0.10	SCYPHOZOA
35	0,36	. 002	- 985	0.27	LEPTASTERIAS SP
37	0.25	. 001	- 986	0.29	FUSTRETON ORFGONENSES
38	6.25	. 801	.987	0.23	HENITRIPIERUS BOI INI
39	0_19	.001	988	0.41	SEA ANENONE UNIDENT
40	0_18	. 001	. 989	0.61	ICELUS SP
41	0_18	.001	.990	0.05	OPHIUROID UNIDENT
42	0.15	.001	.991	0.27	THALEICHTHYS PACIFICUS

TOTAL 200.30

* NUMBER OF HAULS-153, MEAN DEPTH=115.0N (RANGE= 59-274N)

Table B-11. Site Group 2Bial

****	*******	******	*****	*****	**************************
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE O	FCPUE	OCCURI	R. TAXA
****	*******	*****	******	*****	*************************
1	100-24	• 534	• 534	1.00	THERAGRA CHALCOGRAMMA
2	38.29	.204	.738	0.93	CHIONDECETES OPILIO
3	8.84	.047	•785	0.95	GADUS HACROCÉPHALUS
4	8.70	.046	-831	1.00	REINHARDTIUS HIPPOGLOSSOIDES
5	4.08	.022	.853	0.85	LYCODES PALEARIS
6	3.57	.019	.872	0.20	ZUARCIDAE
7	3.05	.016	.888.	0.68	LYCODES BREVIPES
8	2.68	.014	.903	0.43	CTENODISCUS CRISPATUS
9	2.36	.013	•915	0.94	HIPPOGLOSSOIDES ELASSODON
10	1.08	.006	•921	0.20	NEPTUNEA HEROS
11	Q . 98	.005	• 926	0.53	OCTOPUS UNIDENT
12	0.94	.005	.931	0.67	GORGONO CEPHALUS CARYI
13	6.94	.005	•936	0.45	NEPTUNEA PRIBILOFFENSIS
14	0.92	.005	•941	0.40	CHIONDECETES BAIRDI
15	0.92	.005	.946	0.14	CYCLOPTERIDAE
16 -	0.90	.005	.951	0.25	HEMILEPIDOTUS PAPILIO
17	0.81	.004	• 955	0.70	RAJA SP
18	0.77	.094	• 95 9	0.26	LIMANDA ASPERA
19	0.76	.004	•963	0.62	PAGURIDAE
20	0.69	.004	•967	0.16	ASTERIAS AMURENSIS
21	0.66	.003	.970	0.91	PANDALUS SP
22	0.55	.003	.973	0.57	BUCCINUM SP
23	0.53	.003	•976	0.31	PLEURONECTES QUADRITUBERCULATUS
24	9.49	.003	•979	0.48	LEPTASTERIAS SP
25	0.46	.002	.981	0.26	NYUXUCEPHALUS SP
26	0.46	.002	- 984	0.18	STARFISH UNIDENT
27	0.25	.901	•985	0.80	ICELUS SP
26	0.24	.901	.985	0.08	UPHIURUID UNADENT
29	0.24	.001	- 988	0.67	GASTROPUD UNIDENT
30	0.19	. 501	•989	0.16	AINENESTHES SP
31	0-16	.001	• 98 9	0.17	PAGURUS SP
32	0.15	.001	•990	0.15	PAGURUS TREGUNUCHEERUS

TOTAL 187.72

* NUMBER OF HAULS- 87, NEAN DEPTH=113.3N (RANGE= 59-274M)

Table B-12. Site Group 2Bia2

* * * * * *	*******		******		***********************
	MEAN	PROP.	CUMUL	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE O	F CP NE	OCC UR	R. TAXA
****	*******	******	*****	*****	**************************
1	86.85	.432	•432	1.00	THERAGRA CHALCOGRAMMA
2	24.29	.121	• 55 3	0.33	PARALITHODES CANTSCHATICA
3	13-91	.069	.622	0.79	CHIONOECETES OPILIO
4	8.79	.044	•666	0.94	CHIONDECETES BAIRDI
5	7.89	.039	.705	1.00	GADUS MACROCEPHALUS
6	7.33	.036	.742	0.36	LINANDA ASPERA
7	6.23	.031	.773	0.08	PORIFERA
8	4.87	.024	.797	0.98	HIPPOGLOSSOIDES ELASSODON
9	3.77	.019	.816	0.45	LEPIDOPSETTA BILINEATA
10	3.11	.015	.831	0.82	RAJA SP
11	3.07	.015	.846	1.00	ATHERESTHES SP
12	2.87	.014	.861	0.62	P AGURID AE
13	2.82	.014	.875	0.42	HENILEPIDOTUS JORDANI
14	2.66	.013	. 888	0.53	ZOARCIDAE
15	2.56	.013	.901	0.68	HIPPOGLOSSUS STENOLEPIS
16	2.51	.012	.913	0.27	PLEURONECTES QUADRITUBERCULATUS
17	2.00	.010	•923	0.62	ANOPLOPONA FINBRIA
18	1.96	.010	• 933	0.38	GASTROPOD UNIDENT
19	1.56	.008	•941	0.24	OCTOPUS UNIDENT
20	1.29	.006	.947	0.14	STARFISH UNIDENT
21	1.26	.086	• 953	0.21	GORGONOCEPHALUS CARYI
22	1.20	.006	.959	0.21	LYCODES PALEARIS
23	1.08		• 965	0.42	HYOXCCEPHALUS SP
24	1.07	.005	.970	0.80	REINHARDTIUS HIPPOGLOSSOIDES
25	1.04	.005	• 975	0.29	NEPTUNEA LYRATA
26	0.87	.004	.980	0.27	LYCODES BREVIPES
27	0.59	.003	• 98 3	0.12	SCYPHOZOA
28	Q . 54	.003	.985	0.45	HENITRIPTERUS BOLINI
29	0.39	.002	.987	0.35	FUSIIRITON OREGONENSIS
30	0.34	.002	. 989	0.36	NEPTUNEA PRIBILOFFENSIS
31	0.26	.001	.990	0.52	SEA ANEMONE UNIDENT

TOTAL 200.94

* NUNBER OF HAULS- 66, NEAN DEPTH=117.2N (RANGE= 68-152N)

90

Table B-13. Site Group 2Bib

****	*******	*****	******	*****	*******
	HEAN,	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE I	OF CPUE.	DCC URI	R. TAXA
•••	*******	*****	******	****	******************************
_					
1	60.02	.507	.507	1.00	THERAGRA CHALCOGRAMMA
2	30.49	.258	•765	0.92	GADUS MACROCEPHALUS
3	7.17	.061	-825	0.73	ATHERES THES SP
4	3.43	.029	.854	0.33	SEBASTES ALUTUS
5	1.76	.015	.869	0.49	HENITRIPTERUS BOLINI
6	1.71	.014	.884	0.31	BATHYNASTER SIGNATUS
7	1.56	.013	.897	0.55	HENILEPIDOTUS JORDANI
8	1.33	.011	.908	0.22	ZAPRORA SILENUS
9	1.10	.009	. 917	0.27	OCTOPUS UNIDENT
10	1.07	.009	•927	0.33	FUSITRITON OREGONENSIS
11	0.94	.008	.934	0.41	RAJA SP
12	0.72	.006	-941	0.63	CHIONOECETES BAIRDA
13	0.70	.006	•946	0.27	LEPIDOPSETTA BILINEATA
14	0.59	.005	• 95 1	0.47	HALACOCOTTUS KINCAIDI
15	0.55	.005	• 956	0.18	NYOXOCEPHALUS SP
16	0.53	.004	.961	0.63	REINHARDTIUS HIPPOGLOSSOIDES
17	0.48	.004	.965	0.61	HIPPOGLOSSOIDES ELASSODON
18	0.40	.003	•968	0.53	P AGURID AE
19	0.32	.003	.971	0.14	TRIGLOPS SP
20	0.29	-002	• 97 3	0.16	SKATE EGG CASE UNIDENT
21	0.28	.002	•976	9.43	PANDALUS SP
22	0.26	.002	• 978	84.0	ANOPLOPOHA FINBRIA
23	0.23	.002	- 98 0	0-14	PORIFERA
24	0.23	.002	•982	0.12	HIPPEGLOSSUS STENOLEPIS
25	0.20	-002	-983	0.14	GORGONDCEPHALUS CARVI
26	0.20	.002	•985	0.04	DIPLOPTERASTER NULTIPES
27	0.18	.002	.987	0.37	SEA ANEMONE UNIDENT
28	0.14	.001	• 988	80.0	GLYPTOCEPHALUS ZACHIRUS
29	0.13	.001	.989	0.20	SCYPHOZOA
30	0.08	.901	.990	0.43	CHIONOECETES OPILIO
31	0.07	.001	.990	0.02	EVASTERIAS SP

TOTAL 118.34

* NUNBER OF HAULS- 49, NEAN DEPTH=165.9H (RANGE= 99-241H)

Table B-14. Site Group 2Bii

****	*******	*****	******	******	************************
	MEAN	PROP.	CUMUL.	FRE Q.	
	CPUE	OF	PROP .	ÛF	
	(KG/HA)	CPUE	OF CPUE	OCCURF	R. TAXA
****	*******	*****	******	******	***********************
	10 61	75 (757	1 00	
1	30.04	• 334	• 334	1.00	CHAUNUELEIES UPILIU
2	12.40	-120	•4/4	1.00	ALAILERIUUIUS PAPILIU
- 3 - 4	0.42 6 00	100. 120.	627	0.00·	LYCODES CONCOLOR
5	- 84 - 84	. 047	.670	1.00	THERAGRA CHAI COCRANNA
6	3.47	.034	.703	0.20	ACTAPHS UNIOFNI
7	3-38	_033	.736	1.00	REINHARDTIUS HEPPOGLOSSOLDES
A	3.09	. 030	.766	0.72	NYAYEEFPHALHS SP
9	2.67	.026	.792	0.68	PLEURONECTES QUADRITUBERCULATUS
10	2.53	.024	.816	0.72	NEPTUNEA HEROS
11	2.93	.020	.836	9.60	PARALITHODES PLATYPUS
12	1.96	.019	.854	0.84	GADUS NACROCEPHALUS
13	1.96	.019	•873	0.44	LIPARIS SP
14	1.64	.016	.889	0.40	PAGURIDAE
15	1.24	.012	.901	0.84	HIPPOGLOSSOIDES ELASSODON
16	1.06	.010	.911	0.52	NEPTUNEA VENTRICOSA
17	0.97	.009	.921	0.68	LEPTASTERIAS SP
18	0.72	.007	.928	0.80	PANDALUS SP
19	0.65	.006	• 934	0.52	LYCOUES PALEARIS
20	0.50	. 445	.940	0.40	PAGUNUS TREGUNUCHEERUS
21	0.55	• UU J	• 747	U.4 U	LIRABUA ASPEKA
22	4.JJ	CUU.	• 731 054	9+40 0 7:2	CORCONGCEPHALUS CARYT
25	Δ. ζΟ	. 004	.958	0.88	RHCCININ SP
25	0.39		. 96.2	0.76	HYAS SP
26	9.37	.004	.965	0.04	ENVERTEBRATE EGGS UNIDENT
21	0.30	.003	.968	0.44	STARFISH UNIDENT
28	0.28	.003	.971	0.12	RAJA SP
29	0.25	.002	.973	0.56	GYNNUCANTHUS SP
30	9-19	.002	• 975	0.32	ASCIDIAN UNIDENT
31	0.18	. 002	.977	0.04	CLINOPEGNA (ANCISTROLEPIS) HAGNA
32	0.17	.002	•979	0.32	TEALIA SP
33	0.16	.002	.980	0.24	PORIFERA
34	0.15	.001	•982	0.56	AUDIBRANCH UNIDENT
35	.0.1:4	.001	•983	0.88	ARGIS SP
36	0.13	.001	• 984	0.28	LEPEDUP SETTA BELENEATA
31	0.11	.001	• 707	0.12	BALARUS SY
30 70	9+11 A 10	100.	+ 700 097	4 • 4 0 A 1 4	JNALL LUAJIKUPUUJ LUUJ Routupoto internt
J7 40	N. V.	.001	• 701 . QRR	0.76	CADEPDOCTHS DASTDENIES
41	V•V7 A_AQ	- 101	. 900 . 980	0.24	ANI TENTA AVTEERA
42	0.03	.001	.99 <u>0</u>	0.08	HENILEPIDOTUS SP
43	0_08	.001	.991	0.20	PLICIFUSUS KROYERI

(CONTINUED ON NEXT PAGE)

Table B-14. Site Group 2Bii (continued)

HEAN PROP. CUMUL. FREQ. CPUE OF PROP. OF (KG/HA) CPUE OF CPUE OCCURR. TAXA 44 0.07 .001 .991 0.08 SUBERITES DOMUNCULA FOTAL 103.57

1. 1.

.

* NUMBER OF HAULS- 25, MEAN DEPTH= 62.7M (RANGE= 38- 93M)

Table B-15. Site Group 3

****	*******	*****	******	*****	*******************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	ÛF	
	(KG/HA)	CPUE 0	F CP UE	OCC URF	R. TAXA
****	*******	****	******		************************
1	18.76	•465	•465	1.00	REINHARDTIUS HIPPOGLOSSOIDES
2	5.99	.148	.613	0.41	CORYPHAENOIDES PECTORALIS
3	4-14	.102	.716	0.69	ATHERESTHES SP
4	2.48	.061	.777	0.16	SEBASTES BOREALIS
5	1.20	.030	.807	0.33	ANOPLOPOMA FINBRIA
6	1.06	.026	.833	0.22	CORYPHAENOIDES CINEREUS
7	1.00	.025	.858	0.39	SEBASTOLOBUS ALASCANUS
8	9.63	.015	.873	0.27	RAJA SP
9	9.59	.015	• 888	0.53	THERAGRA CHALCOGRANMA
10	0.47	.012	.899	0.24	HIPPOGLOSSOIDES ELASSODON
11	0-47	.012	.911	0.80	NALACOCOTTUS KINCAIDI
12	0-44	.011	•922	0.24	LITHODES AEQUISPINA
13	Q.30	.007	.929	0.14	GADUS HACROCEPHALUS
14	0.29	.007	• 936	0.08	SEBASTES ALUTUS
15	0.28	.007	• 943	0.27	BOTHADCARA BRUNNEUM
16	0.25	.006	.949	0.57	GONATUS SP
17	0.24	.006	•955	0.41	CHIONDECETES ANGULATUS
18	0.22	.006	.961	0.24	HEMETRIPTERUS BOLINI
<u>1</u> 9	0-19	.005	• 966	0.02	ICOSTEUS AENIGHATICUS
20	0.16	.004	- 97 0	0.31	PANDALUS SP
21	0.14	.003	•973	0.20	HOLOTHUROIDEA UNIDENT
22	0-10	.003	•976	0.31	SCYPHOZOA
23	0.10	. 302	.978	0.35	OCTOPUS UNIDENT
24	0.10	.002	-980	0.39	CAREPROCTUS MELANURUS
25	0.09	.002	• 983	0.24	SEA ANEMONE UNIDENT
26	0.06	.002	.984	0.41	CHIONOECETES OPILIO
27	0.06	.002	.986	0.08	SHRIRP UNIDENT
28	0.05	.001	.987	0.18	ZUARCIDAE
29	0.05	.001	.988	0.45	CHIUNUECETES BAINDI
30	0.05	.001	• 989	0.29	GLYPIUCEPHALUS ZACHIRUS
31	0.04	.001	.990	0.12	PURIFERA

TOTAL 40.37

* NUMBER OF HAULS- 51, NEAN DEPTH=507.1N (RANGE=187-732N)

. 1

Table B-16. Site Group 3A

***	********	******	******	******	******************************
	MEAN	PROP.	CUMUL.	FRE Q.	
	CPUE	0F	PR0P .	OF	
	(KG/HA)	CPUE D	FCPUE	OCCURE	R. TAXA
***	*******	******	*****	******	**********************
1	19.36	.462	.462	1.00	REINHARDTEUS HIPPOGLOSSOIDES
2	8.46	.202	.665	0.88	ATHERESTHES SP
3	5.35	.128	.792	0.23	SEBASTES BOREALIS
4	1.08	.026	.818	0.38	HIPPOGLOSSOIDES ELASSODON
5	1.01	.024	.842	0.42	RAJA SP
6	1.00	.024	.866	0.62	THERAGRA CHALCOGRAMMA
7	0.71	.017	. 88 3	88.0	NALACOCOTTUS KINCAEDI
8	0.62	.015	.898	0.23	GADUS MACROCEPHALUS
9	0.54	.013	.911	0.15	ANOPLOPONA FENGRIA
10	0.52	.012	.923	0.15	SEBASTES ALUTUS
11	0.42	.010	• 933	0.15	SEBASTOLOBUS ALASCANUS
12	0.36	.009	.942	0.35	HENETRIPTERUS BOLINI
13	0.39	. 907	.949	0.50	PANDALUS SP
14	0.30	.007	.957	0.23	LITHODES AEQUISPINA
15	0.22	.005	.962	0.54	GONATUS SP
16	0.20	.005	.966	0.54	OCTOPUS UNIDENT
17	9.19	.004	.971	0.38	SCYPHOZOA
18	0.16	.004	.975	0.04	CORYPHAENDIDES PECTORALIS
19	0-14	.003	.978	0.08	SHRINP UNIDENT
20	0.14	.003	.981	0.23	SEA ANEMONE UNIDENT
21	0.08	.002	•983	0.54	CHIONOECETES BAIRDI
22	0.07	.002	. 985	0.12	SEBASTES SP
23	0.07	.002	.987	0.38	CAREPROCTUS NELANURUS
24	0.07	.002	.988	0.50	CHIDNOECETES OPILIO
25	0.06	.001	.990	0.12	PORIFERA
26	0.05	.001	.991	0.31	GLYPIOCEPHALUS ZACHIRUS

TOTAL 41.85

,

+ NUMBER OF HAULS- 26, MEAN DEPTH=417. ON (RANGE=187-563H)

Table B-17. Site Group 3B

****	*******	******	*****	******	*************************
	MEAN	PROP.	CUNUL_	FREQ.	
	CPUE	0F	PROP .	OF	
	(KGZHA)	CBIE U	E CP UE	DCC URF	R. TAXA
****	********				******************************
1	18.89	.440	.440	1.00	REINHARDTIUS HIPPOGLOSSOIDES
2	13.35	.311	.750	0.80	CORYPHAENOIDES PECTORALIS
3	2.44	.057	.807	0.40	CORYPHAENDIDES CINEREUS
4	1.95	.045	.852	0.52	ANOPLOPONA FIMBRIA
5	1.57	.036	.889	0.64	SEBASTOLOBUS ALASCANUS
6	0.55	.013	.901	0.24	LITHODES AEQUISPINA
7	9.53	.012	.914	0.48	ATHERESTHES SP
8	0.50	.012	.925	0.52	BOTHROCARA BRUNNEUM
9	0.44	.010	.936	0.68	CHIONDECETES ANGULATUS
10	0.33	.008	.943	0.04	ICOSTEUS AENIGNATICUS
11	0.31	.007	.951	0.12	RAJA SP
12	0.30	007	.957	0.08	SEBASTES BOREALIS
13	0.27	.006	.964	0.60	GONATUS SP
14	0.23	.005	.969	0.24	HOLOTHUROIDEA UNIDENT
15	0.20	.005	.974	0.44	THERAGRA CHALCOGRAMMA
16	0.20	.005	.978	0.72	MALACOCOTTUS KINCAIDI
17	0.11	.003	.981	0.40	CAREPROCTUS NELANURUS
18	80.0	.002	.983	0.28	ZOARCIDAE
19	0.06	.002	.985	0.12	HEMITRIPTERUS BOLINI
20	0.06	.001	.986	0.32	CHIONOECETES OPILIO
21	0.05	.001	.987	0.24	SEA ANEHONE UNIDENT
22	0. 04	.001	.988	0.48	STARFISH UNIDENT
23	0.04	.001	.989	0.28	GLYPTDCEPHALUS ZACHIRUS
24	0.03	.001	.990	0.20	APTOCYCLUS VENTRICOSUS

TOTAL 42.98

• NUMBER OF HAULS- 25, NEAN DEPTH=600.7H (RANGE=439-732N)

APPENDIX C

Species Assemblages, 1980 Bering Sea Survey

Table		Page
C-1.	Site Group 1	98
C-2.	SiteGroup	99
C-3.	Site Group 2A	100
C-4.	Site Group 2Ai	101
C-5.	Site Group 2Aia	102
С-б.	Site Group 2ial	103
C-7.	Site Group 2Aia2	104
C-8.	Site Group 2Aib	105
C-9.	Site Group 2Aii	106
C-10.	Site Group 2B	107
C-11.	Site Group 3	108
C-12.	Site Group 3A	109
C-13.	Site Group 3B	110

Table C-l. Site Group 1

****	*******	*****	*****	*****	****************
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	ÛF	PROP.	OF	
	(KG/HA)	CPUE 0	F CP UE	OCC URI	R. TAXA
****	*******	******	******	*****	**********************
1	26.66	.279	•219	1.00	CHIONDECETES OPILIO
2	12.43	.130	.410	0.89	LYCODES RARIDENS
3	12.25	•128	•238	1.00	HEMILEPIDOTUS PAPILIO
4	6.52	.068	.606	1.00	NYOXOCEPHALUS SP
5	6.51	.068	.675	0.94	GADUS NACROCEPHALUS
6	6.07	. 964	• 7 3 8	0.83	PLEURONECTES QUADRITUBERCULATUS
7	3.26	.034	•112	0.89	LIMANDA ASPERA
8	2.98	.031	.804	0.94	REINHARDTIUS HIPPOGLOSSOIDES
9	2.97	.031	.835	0.78	PAGURIDAE
10	2.70	.028	.863	0.56	PARALITHODES PLATYPUS
11	1.70	•019	.881	0.61	NEPTUNEA HEROS
12	1.64	.017	.898	1.00	THERAGRA CHALCOGRAMMA
13	1-13	.012	.910	0.94	HIPPOGLOSSOIDES ELASSODON
14	1.08	.911	.921	0.06	BOLTENIA SP
15	0.86	.009	• 930	0.22	ASTERIAS AMURENSIS
16	0.77	.048	.938	0.50	NEPTUNEA VENTRICOSA
17	0.76	.008	•946	0.11	LYCODES CONCOLOR
18	0.75	. 008	.954	0.11	INVERTEBRATE UNIDENT
19	0.75	800.	• 962	0.39	STARFISH UNIDENT
20	9.64	.007	.969	0.22	GORGONOCEPHALUS CARYI
21	0.49	.005	.974	0.39	LEPTASTERIAS POLARIS
22	0.42	.004	.978	0.44	HYAS SP
23	0.24	.003	.981	9.50	LIPARIS SP
24	0.20	.002	.983	0.56	LYCODES PALEARIS
25	0.17	.002	• 985	0.22	LYCODES TURNERI
26	0.13	.001	.986	0.11	LIPARIS DENNYI
27	0.12	.001	•987	0.67	BUREUGADUS SAIDA
28	0.10	.001	.988	0.11	GASTROPOD UNIDENT
29	9.10	.001	.989	9.05	CHITON UNIDENT
30	0.08	。001	.990	0.11	ASCIDIAN UNIDENT

TOTAL 95.42

* NUNBER OF HAULS- 18, NEAN DEPTH= 69.1N (RANGE= 44- 97H)

Table C-2. Site Group 2

****	********	*****	******	******	**********
	NEAN	PROP.	CUNUL.	FREQ.	· .
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE	OF CPUE	OCCURR	L. TAXA
****	********	****	******	******	*******
1	59.97	.223	.223	0.88	THERAGRA CHALCOGRAMMA
2	46.01	.171	. 395	1.00	LINANDA ASPERA
3 .	28.03	.104	.499	0.69	CHIONOECETES OPILIO
4	23.66	.088	.587	0.89	GADUS HACROCEPHALUS
5	19.71	. 07 3	. 66 0	0.16	PARALITHODES PLATYPUS
6	10.92	.041	.701	0.89	LEPIDOPSETTA BILINEATA
7	10.13	.038	.739	0.58	STARFISH UNIDENT
8	8.38	.031	.770	0.92	PLEURONECTES QUADRITUBERCULATUS
9	6. 08	.023	.793	0.28	INVERTEBRATE UNADENT
10	5.20	.019	-812	0.46	PARALITHODES CANTSCHATICA
11	4.82	.018	.830	0.17	ASTERIAS ANURENSIS
12	4.04	.015	.845	0.32	HEMILEPIDOTUS JORDANI
13	4.92	. 815	.860	0.07	LETHASTERIAS NANIMENSIS
14	3.79	.014	.874	0.61	NYOXOCEPHALUS SP
15	3.22	.012	.886	0.55	CHIQNOECETES BAIRDI
16	2.79	.010	.896	0.42	LYCODES PALEARIS
17	1.99	. 007	.904	0.30	GASTROPOD UNEDENT
18	1.95	.007	.911	0.46	PAGURIDAE
19	1.83	.007	.918	0.15	HIPPOGLOSSOIDES ELASSODON
20	1.71	.006	.924	0.52	REINHARDTIUS HIPPOGLOSSOIDES
21	1.62	.006	.930	0.43	GYNNOCANTHUS SP
22	1.38	.005	• 935	0.73	HIPPOGLOSSUS STENOLEPIS
23	1.37	.005	.940	0.39	ERIMACRUS ISENBECKII
24	1.35	.005	• 945	0.09	PORIFERA
25	1.28	.005	• 950	0.22	NEPTUNEA HERUS
26	1.27	.005	.955	0.06	NEPTUNEA PRIBILOFFENSIS
27	1.26	.005	. 960	0.41	RAJA SP
28	1.20	.004	- 96 4	0.02	SEA ANENONE UNIDENT
29	1.01	.004	•968	0.15	NEPTUNEA LYRATA
30	0.98	.094	•932	0.49	LINANDA PROBUSCIDEA
31	0.94	.004	<u>.975</u>	0.15	COTTIDAE
32	0.73	.003	.978	0.22	ATHERESTHES SP
33	0.70	.003	• 980	0.18	LYCODES CONCOLOR
34	0.64	.002	• 983	0.06	ECHINARACHNIUS PARMA
35	0.51	.002	.985	0.04	HALDEYNTHIA AURANTIUN
36	0-41	.002	• 986	0.55	AGUNUS ACIPENSERINUS
37	0.39	.001	-988	0.18	ELEGINUS GRACILES
38	9.30	.001	.989	0.22	NEPTUNEA VENTRICUSA
59	0.24	.001	.990	0.01	UUUUNAKIA SP
40	0.20	.001	• 770	U- 94	NALUTINIMIA JP

TOTAL 268.61

+ NUMBER OF HAULS-207, NEAN DEPTH= 58.1% (RANGE= 15-102M)

Table C-3. Site Group 2A

****	********	******	******	*****	************
	NEAN	PROP.	CUNMA	FREO.	
	CPUE	DF	PROP	DF	
	(KC/HA)	CONF (E CPUE	000 081	R. TAXA
				*****	******
	64.99	. 239	- 239	0.97	THERAGRA CHALCOGRAMMA
2	20 47	145	. 384	1.90	ATNANDA ASPERA
7	29.50	.108	.492	0.84	CHINNECETES OPTITO
	26 02	0.00	501	0.97	
4		077	663	0.21	PADALITHANSS PLATYPHS
2		697J	-00J 704	0 0 7	I EDBAAD SETTA ATIANEATA
2	11+19 a 18	- U-1 A71	4194 778	V07J 0 04	PIENGONECTES QUADRITURERCHI ATHS
•	7 70	• U J 4 C C C	765	0 5 9	CTARTEL INTREMT
Ö	7 12	• 424	•{0] 701	Wej0 A 77	JIANTIJA VALULAI Inverteddate untrent
,	/ • 1 C	• VZ U A25	9171	0.33	ANYERTEDRALE CHADENT Radaittunnee camtecuatica
10		• VZ J	+010 971	0.1.1	FARAL& INDES CANISCINITON
11	4-12	- 413	•031 •031	0 0 0	ACTUACTEDIAC NANIMENCIC
17	9012	•UIJ 017	•040 •50	0 60	FRIUNDELETES OFIDUA Friundeletes ofidua
13	Je Ji 7 4 D	•UIJ	•0.77		ACTEDING ANIDENCES
14	3.47	• • • 1 0	• 01 / 	V+11 A 55	ADICALAD ANURENDED
12	3.13	* V 1 C	• 00)		LILUUES FALEARAS
16	3.48	-011	• 8 Y 4	0.23	RIUKULEPHALUS SP
17	2.20	. UVO	- 703	904C	FAGUREDAE Cacteordo untoent
10	2.10	500.	• 914	9.34	UNDER CONTRACTOR
19	2.05	.008	• 9 10	0.92	HIPPUBLUSSUIDES ELASSUUM
20	1.81	.007	• YZD	0.51	KEINHARDIIO2 HIPPOGLUSSUIDE2
21	1.45	• 042	• YOU	0.51	GIANULARIAUS SP
22	1.43	.005	•955	U .48	ERAMACRUS A SENDECKAA
23	1.42	.005	•941	0.23	NEPTUNEA HERUS
24	1.42	.005	• 946	0.12	HIPPUGLUSSUS SIENULEPIS
25	1.41	• UU)	• 701	V. UY.	PUKIPEKA
26	1.57	.005	• 956	0.52	NAJA SP Nedtunea odtotkoesenete
21	1.28	.005	.901	0.08	NEPIUNEA PRIBILUFFENSES
28	1.20	.004	•965	0.03	SEA ANEMUNE UNIDERT
29	1.10	.004	• 70 7	0.20	
30	1.95		•975	0.19	NEPTUNEA LYNAIA
51	U.96	.004	• 740	U•22	LILUSES LUNCULUK
32	0.82	.003	• 980	0.34	LIMAADA PRUGUSUIDEA
55	4.81	.993.	° 797	U.U/	CLUTANAMALNAIUS PANAA
54	0.75	.003	• 782	0.29	AIRERESTRES SP
35	9.71	.093	• 988	9.06	HALUUTRIHIA AUKANTIUR
56	0.51	.001	• 989	0.21	NEPTUNEA VENTRICUSA
37	0.28	.901	•999	0.05	HALUCTNIHEA SP

TOTAL 272.36

* NUNBER OF HAULS-159, MEAN DEPTH= 66.2N (RANGE= 35-102M)
Table C-4. Site Group 2Ai

	*******	*****	******	*****	*********************
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	DF	PROP 🖌	OF	
	(XG/HA)	CPUE I	DF CPUE	OCCURI	R. TAXA
****	********	*****	*******	******	*************************
					·
1	66.42	• 268	• 268	0.99	THERAGRA CHALCOGRAMMA
2	38.90	. 157	.425	1.00	LIMANDA ASPERA
3	37 - 87	•153	577	0.84	CHIONDECETES OPILIO
4	26-18	.106	•683	9.98	GADUS NACROCEPHALUS
5	9.46	.038	.721	0.97	PLEURONECTES QUADRITUBERCULATUS
6	7.50	.030	•751	0.62	STARFISH UNIDENT
7	6.51	.026	.778	0-50	PARALITHODES CANTSCHATECA
8	5.88	.024	.801	0.95	LEPIDOPSETTA BILINEATA
9	5.28	.021	.823	0.33	INVERTEURATE UNIDENT
10	4.96	.020	.843	0.06	LETHASTERIAS NANIMENSIS
11	3.48	.014	-857	0.56	MTUXUCEPHALUS SP
12	5.44	.014	-870	0.58	LICUDES PALEARIS
15	2.56	.410	.881	0.58	CHAURUECETES BARRUE
14	2.50	.010	.898	0.40	PAGUNIDAE
15	2.23	.009	.877	0.30	SASIRUPUD UNIDENI
16	2.05	.008	.908	0.95	HIPPUGLUSSUIDES ELASSUDUR
17	1.94	.998	.915	0.07	NEFIUNEA PRIBILUFFENSIS
18	1.91	500 -	- 925	0.70	REINMARDIAUS HIPPUGLUSSUAUES
19	1.54	• 404	• 734	V-C3	ALFSUNEA HERUS
20	1.63	-007	• 936	9.32	
~1	1.41	- 440	• 792		PARALAIMUULO FLAIIFUS
22	1.33	•000	• 940	0.37	HERILLETUUIUS JUNDAHI
23	1.21		• 773	0.10	UTLAPTOP TABUTA
24	1.4	- UU) 805	• 936	0 21	NEFILNEA LINAIA
22	1.14	- 99 J	• 702	V+C1	LUTIEDAE Iveodes concolor
20	₩•70 ^ 97	• UU4 00 4	4 709 07A	V.23 A 61	CEA ANEMONE HINTDENT
29	Ve71 A 97	- 007	• 74 4	0 00	ACTEDIAC AMIDENCIC
20	0.03	5 00	•7[4 077	0.07	A SACATAS AN UNERSAS I Amanda Bondnersas
20	0.01	1003 100	. 980	0.JU 0.17	CONTRADACUNTIC DADMA
J.U. Z 1	4 0 1 4 0 1	9 4 4 J	0 2 T	0.04	LUMINANGINAUJ CANNA Malaryututa Andanttim
32	V•F C A £ 1	- 402	• 70 J _ 09£	0.22	ANERECTRICE CO
32	4.ZZ	. 001	• 900 _ 987	0.20	NEPTHAFA VENTRICASA
34	0_20	.001	. 9 A A	0.05	HALACYNTHIA SP
35	0.29	. 00 1	989	A.13	HENTLEPTOTUS PAPTLED
36	0_26	001	.990	0.09	PORIFERA
	4020			/	

TOTAL 248.02

* NUMBER OF HAULS-149, NEAN DEPTH= 66.1N (RANGE= 35-102N)

Table C-5. Site Group 2Aia

***	********	******	*****	******	*************************
	NEAN	PROP.	CUMUL.	FRE Q.	
	CPUE	0F	PROP .	OF	
	(KG/HA)	CPUE C	F CPUE	OCCURI	R. TAXA
***	*******	******	*****	*****	*******
1	77.45	.299	.299	1.00	THERAGRA CHALCOGRANNA
2	50.72	.196	.495	0.99	CHIONOECETES OPILIO
3	26.23	.101	• 596	0.99	GADUS MACROCEPHALUS
4	25.57	.099	.695	1.00	LIMANDA ASPERA
5	11.04	.043	.738	0.99	PLEURONECTES QUADRITUBERCULATUS
6	7.64	.030	.767	0.60	INVERTEBRATE UNIDENT
7	6.78	.026	.793	0.68	STARFISH UNIDENT
8	5.96	.023	.816	0.11	LETHASTERIAS NANIMENSIS
9	4.49	.017	.834	0.84	LYCODES PALEARIS
10	4.33	.017	.851	0.59	MYOXOCEPHALUS SP
11	3.04	.012	•862	0.07	NEPTUNEA PRIBILOFFENSIS
12	3.02	.012	.874	0.21	GASTROPOD UNIDENT
13	2.97	.011	.885	0-14	NEPTUNEA LYRATA
14	2.52	.010	.895	0.32	HEMILEPIDOTUS JORDANI
15	2.45	. 009	.905	0.22	PAGURIDAE
16	2.33	.009	•914	0.94	REINHARDTIUS HIPPOGLOSSOIDES
17	2.08		• 922	0.58	RAJA SP
18	2.06	.008	.930	0.22	NEPTUNEA HERDS
19	2.06	.008	• 938	0.31	PARALITHODES PLATYPUS
20	1.77	.007	•944	0.93	HIPPOGLOSSOIDES ELASSODON
21	1.67	.096	•951	0.38	COTTIDAE
22	1.61	.006	•957	0.90	LEPIDOPSETTA BILINEATA
23	1.23	.005	.962	0.43	LYCODES CONCOLOR
24	1.17	.005	•965	0.11	HALOCYNTHIA AURANTIUN
25	1.16	.004	• 97 1	0.02	SEA ANENONE UNIDENT
26	1.07	.004	•975	0.67	HIPPOGLOSSUS STENOLEPIS
27	1.04	. 904	• 97 9	0.16	ASTERIAS AMURENSIS
28	C.87	.003	.982	0.42	CHIONGECETES BAIRDI
29	0.66	.003	•985	0.19	NEPTUNEA VENTRICOSA
30	0-47	.002	.987	0.30	ATHERESTHES SP
31	0.40	.002	.988	0.06	ASCIDIAN UNIDENT
32	0.33	.001	.990	0.23	HEMILEPIDOTUS PAPILIO
33	0.27	.001	.991	0.14	PARALITHODES CANTSCHATICA

TOTAL 258.91

* NUNBER OF HAULS- 81, NEAN DEPTH= 67.6H (RANGE= 37-102M)

Table C-6. Site Group 2Aial

****	********	******	******	******	********************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE O	F CP UE	OCC UR	R. TAXA
****	******	******	******	*****	*************************
1	85.85	. 330	. 330	1.00	THERAGRA CHALCOGRAMMA
2	48.71	.187	.517	0.98	CHENNOFCETES OPTITO
3	29.53	.113	630	1.90	GADUS NACROCEPHALUS
4	22.68	.087	.717	1.00	LINANDA ASPERA
S	8-17	.031	.749	0.61	INVERTEBRATE UNTDENT
6	7.65	.029	.778	0.98	PLEURONECTES QUADRITUBERCULATUS
7	6.61	.025	.804	0.70	STARFISH UNIDENT
8	6.23	.024	.828	0.16	LETHASTERIAS NANINENSES
9	5.21	.020	.848	0.98	LYCODES PALEARIS
10	3.18	.012	.860	0.53	NYOXOCEPHALUS SP
11	3.08	.012	.872	0.14	NEPTUNEA LYRATA
12	3.04	.012	.883	0.11	NEPTUNEA PRIBILOFFENSIS
13	2.89	.011	.894	0.18	GASTROPOD UNIDENT
14	2.63	.010	.904	0.40	HENILEPIDOTUS JORDANI
15	2.43	.009	.914	0.98	REINHARDTIUS HIPPOGLOSSOIDES
16	2.40	.009	.923	0.75	RAJA SP
17	2.22	.009	.932	0.44	PARALITHODES PLATYPUS
18	1.97	.008	.939	1.00	HIPPOGLOSSOIDES ELASSODON
19	1.86	.007	.946	0.16	HALOCYNTHIA AURANTIUN
20	1-70	.007	• 95 3	0.19	NEPTUNEA HEROS
21	1.61	.006	• 959	0-16	PAGURIDAE
22	1.57	.006	.965	0.91	LEPIDOPSETTA BILINEATA
23	1.36	.005	.970	0.35	COTTIDAE
24	1.16	.004	-975	0.04	SEA ANEHONE UNIDENT
25	1-14	.094	• 97 9	0.72	HIPPOGLOSSUS STENOLEPIS
26	0.91	.004	• 982	0.53	CHIONOECETES BAIRDI
27	0.84	.003	•986	0.30	LYCODES CONCOLOR
28	0-68	.003	• 988	0-14	NEPTUNEA VENTRICOSA
29	0.50	.002	.990	0.42	ATHERESTHES SP

TOTAL 260.35

* NUMBER OF HAULS- 57, MEAN DEPTH= 75.8M (RANGE= 60-102N)

Table C-7. Site Group 2Aia2

****	********	*****	******	*****	************
	MEAN	PROP.	CUMUL.	FREQ.	x
	CPUE	ÛF	PROP.	OF	
	(KG/HA)	CPUE	OF CPUE	OCCUR	R. TAXA
****	*******	****	******	*****	*************************
1	56.86	.283	•283	1.00	LIMANDA ASPERA
2	35.45	.176	.459	1.00	PLEURONECTES QUADRATUBERCULATUS
3	27.19	.135	•594	1.00	CHIONDECETES OPILIO
4	11-41	.057	.651	0.58	INVERTEBRATE UNIDENT
5	11.35	.056	.707	0.96	GADUS NACROCEPHALUS
6	8.65	.043	.750	0.75	NYOXOCEPHALUS SP
7	7.67	.038	.788	0.63	STARFISH UNIDENT
8	6.43	.032	.820	0.38	PAGURIDAE
9	5.02	.025	•845	0.29	ASTERIAS AMURENSIS
10	4.55	.023	.868	0.75	LYCODES CONCOLOR
11	3.46	.017	.885	0.29	NEPTUNEA HEROS
12	2.97	.015	.900	0.46	COTTIDAE
13	2.51	.012	.912	1.00	THERAGRA CHALCOGRAMMA
14	1.99	.010	• 922	0.13	ASCIDIAN UNIDENT
15	1.88	.009	.932	0.88	LEPIDOPSETTA BILINEATA
16	1.25	.009	.940	0.50	HYAS SP
17	1.69	.008	•949	0.79	LINANDA PROBOSCIDEA
18	1.58	.008	.957	0.04	EVASTERIAS SP
19	1.50	.007	.964	0.25	HALOCYNTHIA SP
20	1.43	.007	.971	0.50	LYCODES PALEARIS
21	1.31	. 006	.978	0.29	GASTROPOD UNEDENT
22	0.75	.004	.981	0.83	REINHARDTIUS HIPPOGLOSSOIDES
23	Q.65	.003	.985	0.25	HENILEPIDOTUS PAPILIO
24	0.30	.801	•986	0.21	PARALITHODES CANTSCHATICA
25	0.25	.001	.987	0.54	HIPPOGLOSSUS STENOLEPIS
26	0.23	.001	.988	0.75	HIPPOGLOSSOIDES ELASSODON
27	0.22	.001	.990	0.33	CHIONOECETES HYBRID
28	0.20		.991	0.17	RAJA SP

TOTAL 201.15

* NUMBER OF HAULS- 24, MEAN DEPTH= 48.2M (RANGE= 37- 62M)

Table C-8. Site Group 2Aib

****	*******	*****	****	******	************
.se .	MEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	ÛF	
	(KG/HA)	CPUE C	F CPUE	OCCUR	R. TAXA
	*******	******	******	*****	************************
1	73.17	.393	. 393	1.00	LINANDA ASPERA
2	21.69	.116	.509	0.97	THERAGRA CHALCOGRAMMA
3	18.27	.098	.607	0.97	GADUS NACROCEPHALUS
4 -	16.97	.091	• 698	0.94	PARALETHODES CANTSCHATICA
5	11.80	.063	.761	0.96	LEPIDOPSETTA BILINEATA
6	8.60	.046	.808	0.54	STARFISH UNIDENT
7	6.79.	. 0.36	.844	0.94	PLEURONECTES QUADRITUBERCULATUS
8	6.10	.033	.877	0.99	CHIONDECETES BAIRDI
9	2.65	.014	.891	0.94	HIPPOGLOSSOIDES ELASSODON
10	2,55	.014	•905	0.72	PAGURIDAE
11	2.28	.012	•917	0.66	CHIONOECETES OPILIO
12	1.93	.010	. 927	0.51	LIMANDA PROBOSCIDEA
13	1.55	800.	•936	0.76	HIPPOGLOSSUS STENOLEPIS
14	1-41	.008	.943	0.13	ECHINARACHNIUS PARMA
15	1.27	. 007	• 950	0.24	ATHERES THES SP
16	1.18	.006	• 956	0.55	GASTROPOD UNIDENT
17	1.05	.006	• 962	0.25	NEPTUNEA HEROS
18	0.83	. 004	• 966	0.45	RAJA SP
19	0.55	.003	.969	0.18	PORIFERA
20	0.51	.003	.972	0.16	SCYPHOZOA
21	0.49	.003	.975	0.52	NYOXGCEPHALUS SP
22	0.45	.002	•977	0.03	LEPTUCOTTUS ARMATUS
23	0.39	. 002	.979	0.01	HALDEVNTHEA SP
24	0.39	.002	-981	0.60	HTAS SP
25	0.38	.002	•983	0.21	GURGUNUCEPHALUS CARTI
26	0.52	.002	•985	0.33	HULUTHUKUIDEA UNIDENT
27	0.24	.001	• 985	0.27	LTCUBES PALEARIS
28	6.22	.001	• 985	0.27	ALTIUNEA LYKATA
29	0.20	.001	•989	0.40	ERATAURUS ISENDEURII
50	V-19	.001	• 990	¥•22	NEFIUNEA VENIKICUSA
51	9.17	.001	• 771	Uo U 4	ZUARLEUAL

TOTAL 186.35

* NUNBER OF HAULS+ 67, MEAN DEPTH= 64.2M (RANGE= 35-101M)

105

Table C-9. Site Group 2Aii

	********		******	******	
	NEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE 0	F CPUE	OCCURI	R. TAXA
****	*******	******	******	*****	
1	96.74	.268	.268	0.80	PARALITHODES PLATYPUS
2	46.56	.129	.397	1.00	LEPIDOPSETTA BALANEATA
3	38.37	.106	.504	1.00	HEHILEPIDOTUS JORDANI
4	20.73	.057	.561	0.90	GADUS NACROCEPHALUS
5	17.24	.048	.609	0.90	CHIONDECETES OPILIO
ó	16.52	.046	•655	0.20	PORIFERA
7	15.99	.044	.699	0.90	ERIMACRUS ISENBECKII
8	15.63	.043	.742	0.30	INVERTEBRATE UNIDENT
9	15.62	.043	.786	0.80	THERAGRA CHALCOGRAMMA
10	15.33	.042	. 828	1.00	LINANDA ASPERA
11	12.46	.035	.863	0.40	ASTERIAS ANURENSIS
12	12.01	.033	.896	0.80	GYNNOCANTHUS SP
13	8.10	. 022	.919	0.30	SEA ANENONE UNIDENT
14	5.95	.016	.935	0.90	CHIGNGECETES BAIRDI
15	5.68	.016	.951	0.60	LETHASTERIAS NANIMENSIS
16	3.07	.009	• 959	0.30	CUCUNARIA SP
17	2.43	.007	.966	0.60	ATHERESTHES SP
18	2.37	.007	.973	0.90	HIPPOGLOSSUS STENOLEPIS
19	2.30	.006	.979	0.70	HIPPOGLOSSOIDES ELASSODON
20	1.62	.005	. 983	0.50	PLEURONECTES QUADRITUBERCULATUS
21	1.44	.004	. 987	0.60	PARALITHODES CAMTSCHATICA
22	1.39	.004	.991	0.10	STARFISH UNIDENT

10TAL 360.68

* NUNBER OF HAULS- 10, MEAN DEPTH= 68.0N (RANGE= 46- 95N)

Table C-10. Site Group 2B

****	********	******	******	******	*******
****	HEAN CPUE (KG/HA)	PROP. OF CPUE O	CUNUL. PROP. F CP UE	FREQ. OF OCC URI	R. TAXA
1	110.28	.570	. 57 0	1.00	LINANDA ASPERA
2	29.90	.154	.724	0.58	STARFISH UNIDENT
3	10.76	.056	.780	0.40	ASTERIAS ANURENSIS
4	9.17	. 047	.827	0.85	PLEURDNECTES QUADRITUBERCULATUS
5	2.50	.039	.866	0.90	NYOXOCEPHALUS SP
6	7.38	.038	.904	0.75	LEPIDOPSETTA BILINEATA
7	2.87	.015	.919	1.00	LINANDA PROBOSCIDEA
8	2.73	.014	.933	0.63	ELEGINUS GRACILIS
9	1.84	.010	.942	0.90	AGONUS ACIPENSERINUS
10	1.35	.007	.949	0.81	GYNNOCANTHUS SP
11	1.31	. 007	.956	0.60	HALLOTUS VILLOSUS
12	0.97	.005	.961	0.73	TELNESSUS CHEIRAGONUS
13	0.96	.005	.966	0.58	PLATACHTHYS STELLATUS
14	0.94	.005	. 97 1	0.63	GADUS NACROCEPHALUS
15	0.85	.004	.975	0.77	HIPPOGLOSSUS STENOLEPIS
16	0.73	.904	.979	0.10	INVERTEBRATE UNIDENT
17 -	0.69	.004	.983	0.42	OSNERUS MORDAX
18	9.56	. 903	.986	0.60	PAGURIDAE
19	0.44	.002	.988	0.21	NEPTUNEA HEROS
20	0.42	.002	.990	0.31	PARALETHODES CANTSCHATICA

TOTAL 193.57

<u>,</u> ;

* NUNBER OF HAULS- 48, MEAN DEPTH= 31.2N (RANGE= 15- 55N)

Table C-11. Site Group 3

****	*******	*****	******	*****	***********
	NEAN	PROP.	CUMUL.	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE (OF CPUE	OCC URE	R. TAXA
****	*******	*****	******	*****	***************
1	65.99	.409	-409	0.99	THERAGRA CHALCOGRAMMA
2	19.01	.118	.527	1.00	GADUS NACROCEPHALUS
3	10.50	.065	•295	0.87	CHIONOECETES OPILIO
4	. 9.85	.061	•653	0.74	CHIONDECETES BAIRDE
5	7.67	.048	.701	0.91	RAJA SP
6	6. 87	.043	.744	0.61	ATHERESTHES SP
7	6.25	. 039	.782	0.88	REINHARDTIUS HIPPOGLOSSOIDES
8	4.84	.030	.812	0.89	LYCODES PALEARIS
. 9	4.37	.027	.840	0.23	LYCODES BREVIPES
10	4.30	. 027	• 866	0.95	HIPPOGLOSSOIDES ELASSODON
11	3.89	.024	.890	0.21	ANOPLOPONA FINBRIA
12	2.65	.016	.907	0.27	GORGONOCEPHALUS CARYI
13	1.98	.012	•919	0.25	INVERTEBRATE UNIDENT
14	1.30	.008	.927	0.45	STARFISH UNIDENT
15	1.10	.007	.934	0.46	NEPTUNEA PRIBILOFFENSIS
16	C.82	.005	. 939	0.44	OCTOPUS UNIDENT
17	0.81	.005	•944	0.43	HIPPOGLOSSUS STENOLEPIS
18	0.70	.004	- 948	0.33	PAGURIDAE
19	0.63	.004	.952	0.27	NYOXOCEPHALUS SP
20	0.55	.003	• 956	0.23	CHIONOECETES HYBRID
21	0.53	.003	•959	0.30	GASTROPOD UNLDENT
22	0.51	.003	• 962	0.30	LINANDA ASPERA
23	0.51	.003	•965	0.11	CTENUDISCUS SP
24	0.43	.003	•968	0.38	LEPIDOPSETTA BILINEATA
25	0.41	.003	.970	0.27	HEMITRIPTERUS BOLINI
26	0.38	.002	. 973	0.33	SEA ANEHONE UNIDENT
27	0.36	.002	. 975	0.64	PANDALUS SP
28	0.36	.002	.977	0.50	ICELUS SP
29	0.33	.002	.979	0.08	HALACOCOTTUS KINCAIDE
30	0-26	• 00 2	•981	0.25	PLEURONECTES QUADRITUBERCULATUS
31	0.25	.002	• 98 3	0.23	COTTIDAE
32	0.25	.002	• 984	0.10	ZOARCIDAE
33	0.24	.001	• 986	0.42	BATHYNASTER SIGNATUS
34	0.19	.001	.987	0.41	DASYCOTTUS SETIGER
35	0.16	.001	.988	0.23	NEPTUNEA LYRATA
36	0.13	.001	• 98 9	0.23	BUCCINUM SCALARIFORNE
37	0.13	.001	.989	0.07	LETHASTERIAS NANIMENSIS
38	0.12	.001	• 990	0.37	GLYPTOCEPHALUS ZACHIRUS

10TAL 161.23

* NUNBER OF HAULS-115, MEAN DEPTH=120.5H (RANGE= 84-243N)

.

Table C-12. Site Group 3A

****	********	******	******	*****	*************************
	NEAN	PROP.	CUMUL.	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE C	F CP UE	OCC URI	R. TAXA
***	********	*****	*****	*****	******************************
1	70.23	.446	.446	0.98	THERAGRA CHALCOGRAMMA
2	17.75	.113	• 55 9	1.00	CHIONDECETES BAIRDI
3	15.28	.097	.656	1.00	GADUS NACROCEPHALUS
4	10.57	.067	.724	9.82	CHIONDECETES OPILIO
5	8.37	. 053	.777	0.98	ATHERESTHES SP
6	6.29	.040	.817	0.88	RAJA SP
7	4.55	.029	.846	0.40	ANOPLOPONA FINBRIA
8	3.92	.025	.871	1.00	HIPPOGLOSSOIDES ELASSODON
9	2.73	.017	. 888	0.17	GORGONOCEPHALUS CARYI
10	2.68	.017	.905	0.82	LYCODES PALEARIS
11	1.75	. 011	.916	0.15	INVERTEBRATE UNIDENT
12	1.67	.011	.927	0.25	CHIONGECETES HYBRID
13	1.48	. 809	.936	0.77	REINHARDTIUS HIPPOGLOSSOIDES
14	0.87	.006	.942	0.23	OCTOPUS UNIDENT
15	0.86	.005	.947	0.38	HIPPOGLOSSUS STENOLEPIS
16	9.27	.005	•952	0.37	PAGURIDAE
17	0.75	.005	.957	9.50	LEPIDOPSETTA BILINEATA
18	0.65	.004	.961	0.35	NEPTUNEA PRIBILOFFENSIS
19	0.58	.004	•965	0.47	HEHITRIPTERUS BOLINI
20	0.57	.004	.968	0.40	GASTROPOD UNIDENT
21	0.55	.004	•972	0.32	LIMANDA ASPERA
22	0.44	.003	.975	0.32	STARFISH UNIDENT
23	0.44	.003	.977	0.32	SEA ANEMONE UNIDENT
24	0.38	.002	• 980	0.17	ZOARCIDAE
25	0.31	.002	• 982	0.08	HALACOCOTTUS KINCAIDI
26	0.31	.002	.984	0.58	BATHYMASTER SIGNATUS
27	0.30	.002	• 986	0.20	HYOXOCEPHALUS SP
28	0.29	.002	.987	0-68	DASYCOTTUS SETIGER
29	0.25	.002	.989	0.18	PLEURONECTES QUADRITUBERCULATUS
30	0.19	.001	.990	0.13	COTTIDAE

TOTAL 157.30

. .

* NUNBER OF HAULS- 60, NEAN DEPTH=121.5N (RANGE= 84-243N)

Table C-13. Site Group 3B

****	*******	*****	******	*****	*************************
	MEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP.	OF	
	(KG/HA)	CPUE (OF CPUE	OCC URI	R. TAXA
***	*******	*****	******	*****	*********
1	48.85	.307	.307	1.00	THERAGRA CHALCOGRAMMA
2	22.84	.144	.451	1.00	GADUS NACROCEPHALUS
3	14.47	.091	• 542	1.00	REINHARDTEUS HIPPOGLOSSOLDES
4	13.21	.083	.625	0.94	RAJA SP
5	12.93	.081	.706	0.44	LYCODES BREVIPES
6	11-45	.072	.778	0.93	CHIONOECETES OPILIO
7	9+85	.062	.840	0.96	LYCODES PALEARIS
8	4.23	• 027	.867	0.89	HIPPOGLOSSONDES ELASSODON
9	2.53	.016	.883	0.59	STARFISH UNIDENT
10	2.49	.016	-898	0.35	INVERTEBRATE UNIDENT
11	1.67	.010	. 909	0.35	MYOXUCEPHALUS SP
12	1.66	.010	•919	0.59	NEPTUNEA_PRIBILOFFENSIS
13	1.23		.927	0.39	GORGGNOCEPHALUS CARYI
14	1.19	.007	-954	0.24	CTENUDASCUS SP
15	1-14	. 007	.941	0.46	CHIONDECETES BAIRDA
16	1.01	.006	.948	9.78	PANJALUS SP
17	0.84	.005	- 953	0.65	ACELUS SP
18	0.//	.005	• 958	8.50	PAGURADAL
19	0.75	.005	• 96 3	0.51	CUTTIDAL Cotoodageta del tugatía
20	0.55	.005	• 966	0.24	LEPIDUPSEILA BILINEALA
21	0.4/	.005	. 95 9	0.19	GASINUPUD UNIDENI
22	0.44		. 972	0.45	BULLINUN SURLAREFURNE
23	0.41	.003	•964	U+b/	UCTUPUS UNLUENT
24	U-21	- 902	• 94 0	V • 40	HIPPULUSSUS SIERULEFIS
23	9.20		• 98 0	0.70	NEFIUREA LINAIA Dadai studdec di atmone
20	V•CJ	• UUZ	• 7 (7	V•J7 0 20	ATHERECTHES SO
21	V.C.)		• 901	V+CV	AINEREJINEJ JF I Veades Cancol ad
20	V. 24		- 702	0.07	LICUDES CUNCULUR
27	U+24 8 21	100	• 704	0.20	I ALVEREDIADO VIMENTOT
24	90CJ	.001	• 90J	0.17	TTARCINAF
34	V+C1	. 001	. 7 4 1	0.17	VOLUIOPSIUS MINDENDORESTI
72	0.17	.001	.900 .989	0.22	CHIUNUECEIES HABBUULLIT
33	0_1'A	. 001	.998	0.41	BUCCINUM ANGULOSSUM
37	0,16	.001	.991	0.26	A THANDA A SPERA
ع ر ی	VETO	1041	• / / •	VELU	

TOTAL 159.04

* NUNBER OF HAULS- 54, NEAN DEPTH=120.1N (RANGE= 95-163N)

.

APPENDIX D

Species Assemblages, 1981 Bering Sea Survey

Table		Page
D-1.	Site Group	112
D-2.	Site Group 2	. 113
D-3.	Site Group 2A	. 114
D-4.	Site Group 2Ai	. 115
D-5.	Site Group 2Aii	. 116
D-6.	Site Group 2B	. 117
D-7.	Site Group 3	118
D-8.	Site Group 3A	. 119
D-9.	Site Group 3Ai	. 120
D-10.	Site Group 2Aii	. 121
D-11.	Site Group 3B	. 122

Table D-l. Site Group 1

	*******	**********	******	******************
	MEAN	PROP. CUMUL.	FREQ.	
	CPUE	OF PROP.	ÛF	·
	(KG/HA)	CPUE OF CPU	E OCCUR	R. TAXA
****	*******	**********	******	**********************
1	51.48	- 517 - 517	1.00	I THANDA ASPERA
2	14 60	147 663	0.57	ACTERTAS ANHRENSTS
7	0 28	007 756	0.29	CTADEICH HNIDENT
3	7.20			ICDINDCCTIA DI INCATA
4	0.01	.100.	00.00	LEFIUUFSEITA DILANEATA
5	6.04	.061 .884	1.00	HIPPUGLUSSUS STENULEPIS
6	2.35	.024 .908	0.86	PLATICHTHYS STELLATUS
7	1.56	.016 .923	1.00	LINANDA PROBUSCIDEA
8	1.20	.012 .935	0.57	PORIFERA
9	1.09	.011 .946	0.86	GADUS MACROCEPHALUS
10	0.75	.007 .954	0.86	TRICHODON TRICHODON
11	9.67	.007 .960	9.71	BOLTENIA GVIFERA
12	0.63	.006 .967	0.71	TELNESSUS CHERRAGONUS
13	0.62	.006 .973	0.29	PARALITHODES CANTSCHATICA
14	0.49	.005 .978	0.86	NYOXOCEPHALUS SP
15	0.28	.003 .981	1.00	HEXAGRANNOS STELLERE
16	0.28	. 003 . 983	1.00	GYMNOCANTHUS SP
17	· 0.26	ARG_ 7 86.	0_63	PAGURTDAF
4 7 1 0	1 22		1 00	
10	¥•22	• 442 • 700	1.00	UJALKUJ AUADAA A sudansa auadat tudssa u tita
19	9.22	.002 .990	0./1	PLEUMUNECIES NUAUKIIUBENCULATUS

TOTAL 99.65

• NUMBER OF HAULS- 7. NEAN DEPTH= 28.0N (RANGE= 13- 37M)

Table D-2. Site Group 2

****	*******	*****	******	*****	****************************
	HEAN	PROP.	CUNUL.	FREQ.	·
	CPUE	OF	PROP.	0F ·	
	(KG/HA)	CPUE I	DF CPUE	OCCURF	R. TAXA
****	********	*****	******	*****	*************************
1	78.61	.291	.291	1.90	LINANDA ASPERA
2	64.27	.238	•529	0.96	THERAGRA CHALCOGRAMMA
3	22.38	.083	.612	0.99	GADUS NACROCEPHALUS
4	16-17	.060	.672	0.93	PLEURONECTES QUADRITUBERCULATUS
5	11.30	.042	.714	0.76	CHIONDECETES OPILIO
6	10.47	.939	.753	0.28	ASTERIAS AMURENSIS
7	10.19	.038	.790	0.95	LEPIDOPSETTA BILINEATA
8	18.19	.038	-828	0.81	PAGURIDAE
9	6.59	. 02 4	•852	0.58	STARFISH UNIDENT
10	4.00	.015	.867	0.50	PARALITHODES CANTSCHATICA
11	3.06	.011	.879	0.98	HIPPOGLOSSOIDES ELASSODON
12	3.06	.011	.890	0.68	NYOXOCEPHALUS SP
13	2.18	.008	.898	0.61	NEPTUNEA HEROS
14	2.00	.007	- 905	0.33	LINANDA PROBOSCIDEA
15	2.00	. 007	.913	0.25	PORIFERA
16	1.80	.007	-919	0.64	RAJA SP
17	- 1-43	.005	• 925	0.67	HIPPOGLOSSUS STENOLEPIS
18	1.39	• 005	.930	0.21	ASCIDIAN UNIDENT
19	1.37	.005	• 935	0.21	PARALITHODES PLATYPUS
20	1.36	.005	• 940	0.60	CHIONDECETES BAIRDA
21	1.31	.005	•945	0.15	HALOCYNTHIA SP
22	1.23	.005	• 949	0.41	HEHILEPIDOTUS JORDANI
23	1.21	.004	.954	0.65	NEPTUNEA VENTRICOSA
24	1-18	. 0.04	•958	0.46	GORGONOCEPHALUS CARVI
25	0.99	.904	•962	0.31	NEPTUNEA LYRATA
26	0.84	. 00 3	• 965	0.16	LYCODES SP
27	0.75	. 00 3	.968	0.10	SEA ANEHONE UNIDENT
28	0.70	• 00 3	<u> </u>	0.19	NEPTUNEA PRIBILOFFENSIS
29	0.68	.003	•973	0.39	GASTROPOD UNIDENT
30	0.65	.002	•975	0.42	ERINACRUS ISENBECKII
31	.9.64	.002	•978	0.47	LYCODES PALEARIS
32	0.64	.002	.980	0.47	ATHERESTHES SP
33	0.58	.002	• 982	0.03	ECHINARACHNIUS PARMA
34	0.46	.002	-984	0.51	HYAS SP
35	6.42	.002	• 985	0.55	AGONUS ACIPENSERINUS
36	0.40	.001	.987	0.32	GYMNOCANTHUS SP
37	0.34	.001	- 988	0.53	REINHARDTIUS HIPPOGLOSSOIDES
38	0.31	.001	. 989	0.04	ECHINARACHNIUS PARNA
39	0.25	.001	- 990	0.09	BOLTENIA OVIFERA

TOTAL 270.03

* NUNBER OF HAULS-165, NEAN DEPTH= 68.0N (RANGE= 31-110M)

Table D-3. Site Group 2A

* * *	*********	*****	******	*****	*****************
	HEAN	PROP.	CUNUL.	FREQ.	
	CPUE	OF	PROP.	٥F	
	(KG/HA)	CPUE (F CPUE	OCC URI	R. TAXA
	********	*****	******	******	*****************
1	59.89	. 284	.284	0.99	THERAGRA CHALCOGRAMMA
2	34.77	. 165	.448	1.00	LINANDA ASPERA
3	21.85	.103	•552	0.99	CHIONOECETES OPILIO
4	19.98	. 095	.646	0.99	PLEURONECTES QUADRATUBERCULATUS
5	18.91	.090	.736	1.00	GADUS MACROCEPHALUS
6	12.35	.058	.794	0.86	PAGURIDAE
7	5.87	. 028	• 8 2 2	0.81	STARFESH UNIDENT
8	2.82	.013	.835	0.15	ASTERIAS AMURENSIS
9	2.69	.013	.848	0.42	PARALIIHODES PLATYPUS
10	2.50	.012	.860	0.89	LEPIDOPSETTA BILINEATA
11	2.44	.012	.872	0.73	NYOXUCEPHALUS SP
12	2.35	.011	- 883	0.25	ASCIDIAN UNIDENT
13	2.32	.011	.894	0.70	NEPTUNEA HEROS
14	2.16	.010	.904	0.52	HEMILEPIDOTUS JORDANI
15	1.71	.008	.912	0.60	GORGONDCEPHALUS CARYI
16	1.65	.008	•920	0.31	LYCODES SP
17	3.44	.007	.927	0.12	SEA ANENONE UNIDENT
18	1.34	.006	•933	0.70	RAJA SP
19	1.27	.006	.939	0.63	GASTROPOD UNIDENT
20	1.16	.006	。945	0.15	HALOCYNTHIA SP
21	1.12	.005	.950	0.99	HIPPOGLOSSOIDES ELASSODON
22	1.08	005	• 955	0.50	ERIMACRUS ISENBECKII
23	1.05	.005	.960	0.54	NEPTUNEA VENTRICOSA
24	0.97	.005	.964	0.57	HIPPOGLOSSUS STENOLEPIS
25	0.90	.004	• 96 9	0.08	PORIFERA
26	6.79	- 094	.972	0.40	CHIONOECETES BAIRDI
27	0.73	.093	.976	0.67	LYCODES PALEARIS
28	0.59	.003	.979	0.36	GYNNOCANTHUS SP
29	0.59	.003	•982	0.82	REINHARDTIUS HIPPOGLOSSOIDES
30	0.42	.002	• 984	0.04	ZOARCIDAE
31	0.42	.002	•986	0.18	NEPTUNEA PRIBILOFFENSIS
32	0.38	.002	• 987	0.51	ATHERESTHES SP
33	0.37	.002	• 98 9	0.19	HEMILEPIDOTUS PAPILIO
34	0.32	.002	.991	0.04	NEPTUNEA SP

TOTAL 211.19

+ NUNBER OF HAULS- 84, MEAN DEPTH= 71.3H (RANGE= 40-102H)

114

Table D-4. Site Group 2Ai

****	*******	*****	******	*****	*************************
	NEAN CPUE	PROP. OF	CUNUL. PROP.	FREQ. OF	
	(KG/HA)	CPUE 0	F CP UE	OCC URF	R. TAXA
****	*******	******	*****	*****	*****************************
1	38.50	.202	.202	1.00	LINANDA ASPERA
2	37.12	.194	.396	0.98	THERAGRA CHALCOGRAMMA
3	24.99	.131	.527	1.00	PLEURONECTES QUADRITUBERCULATUS
4	22.64	.119	-646	1.00	GADUS NACROCEPHALUS
5	20.02	.105	.750	0.98	CHIONOECETES OPILIO
6	12.25	.064	.815	0.87	PAGURIDAE
7	4.81	.025	.840	0.77	STARFISH UNIDENT
8	3.19	.017	.857	0.85	NYOXOCEPHALUS SP
9	2.91	.015	.872	0.20	ASTERIAS ANURENSIS
10	2.34	.012	.884	0.85	NEPTUNEA HERUS
11	2.28	.012	.896	0.43	LYCODES SP
12	2.06	.011	.907	0.72	GORGONOCEPHALUS CARYI
13	1.86	.010	.917	0.23	ASCIDIAN UNIDENT
14	1.66	.009	.925	0.72	RAJA SP
15	1.61	.008	•934	0.72	GASTROPOD UNIDENT
16	1.60	.008	.942	9-21	HALOCYNTHIA SP
17	1.25	.007	.949	1.00	HIPPOGLOSSOIDES ELASSODON
18	1.08	.006	•954	0.25	PARALITHODES PLATYPUS
19	0.91	.005	• 9 59	0.70	LYCODES PALEARIS
20	0.81	.004	.963	0.85	LEPIDOP SEITA BELINEATA
21	9.80	.094	•968	0.54	NEPTUNEA VENTRICOSA
22	0.75	.004	.971	0.90	REINHARDTIUS HIPPOGLOSSOIDES
23	0.61	.003	.975	0.54	HIPPOGLOSSUS STENOLEPIS
24	0.58	. 00 3	•978	0.05	ZUARCIDAE
25	0.50	。00 3	.980	0.23	HEMILEPIDOTUS PAPILIO
26	Q. 47	.002	•983	0.18	NEPTUNEA PRIBILOFFENSIS
27	0.43	.002	.985	0.03	NEPTUNEA SP
28	0.40	.002	.987	0.28	LYCODES BREVIPES
29	0.33	.002	.989	0.51	HYAS SP
30	0.31	.002	.991	0.15	PARALITHODES CANTSCHATICA

IOTAL 190.90

+ NUMBER OF HAULS- 61, NEAN DEPTH= 69.2N (RANGE= 40- 99M)

Table D-5. Site Group 2Aii

		******	******	******	*****
	NEAN	PROP	CUNUL	FREQ.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE OF	F CP UE	OCC URF	R. TAXA
	*******	****	*****	*****	*****
1	120.26	. 454	•454	1.00	THERAGRA CHALCOGRAMMA
2	26-71	.101	•555	1.00	CHIONDECETES OPILIO
3	24.88	.094	.648	1.00	LINANDA ASPERA
4	12-61	. 948	. 696	0.83	PAGURIDAE
5	9.05	.034	.730	1.00	GADUS MACROCEPHALUS
6	8.69	.033	.763	0.91	STARFISH UNIDENT
7	7.10	.027	.790	0.96	HENALEPIDOTUS JORDANI
8	6.98	.026	.816	1.00	LEPIDOPSETTA BILINEATA
9	6.97	.026	.842	0.87	PARALITHODES PLATYPUS
10	6.68	.025	.868	0.96	PLEURONECTES QUADRITUBERCULATUS
11	4.93	.019	.886	0.26	SEA ANENONE UNIDENT
12	3.64	.014	.900	D.30	ASCADEAN UNIDENT
13	3.17	.012	•912	0.74	ERIMACRUS ISENBECKII
14	3.05	.012	•923	0.09	PORIFERA
15	2.66	.010	•934	0.83	CHIONDECETES BAIRDI
16	2.57	.010	•943	0.04	ASTERIAS AMURENSIS
17	2.26	.009	.952	0.30	NEPTUNEA HEROS
18	1.92	. 007	•959	0.91	GYNNOCANTHUS SP
19	1.92	.007	• 966	0.65	HIPPOGLOSSUS STENOLEPIS
20	1.72	.007	• 97 3	0.52	NEPTUNEA VENTRICOSA
21	1-11	.004	.977	0.91	ATHERESTHES SP
22	0.96	.004	.981	0.09	HALOCYNTHIA AURANTIUN
23	0.78	.003	.984	0.96	HIPPOGLOSSOIDES ELASSODON
24	9.15	.003	.986	0.26	GORGONOCEPHALUS CARYI
25	0.50	.002	• 988	0.65	RAJA SP
26	0.44	.002	.990	0.39	NYOXOCEPHALUS SP
27	Q.38	.001	.991	0.09	HEMITRIPTERUS BOLINI

TOTAL 265.00

+ NUNBER OF HAULS- 23, MEAN DEPTH= 77.9N (RANGE= 64-102N)

Table D-6. Site Group 2B

****	*******	*****	******	*****	*********************************
	HEAN	PROP.	CUMUL.	FRE Q.	
	CPUE	OF	PROP .	OF	
	(KG/HA)	CPUE I	OF CPUE	OCCUR	R. TAXA
****	*******	*****	******	*****	******************************
1	125.30	.385	.385	1.00	LINANDA ASPERA
2	61.68	.189	.574	0.92	THERAGRA CHALCOGRAMMA
3	25.50	.078	•653	0.99	GADUS NACROCEPHALUS
4	18.88	.058	.711	0.42	ASTERIAS ANURENSIS
5	18.19	.056	.767	1.00	LEPIDOPSETTA BILINEATA
6	12.53	. 038	.805	0.89	PLEURDNECTES QUADRITUBERCULATUS
7	8.14	.025	.830	0.76	PAGURIDAE
8	8.07	.025	.85 5	0.87	PARALITHODES CANTSCHATICA
9	7.52	.023	.878	0.34	STARFISH UNIDENT
10	5.09	.016	•894	0.96	HIPPOGLOSSOIDES ELASSODON
11	4.15	.013	.905	0.62	LIMANDA PROBOSCIDEA
12	3.76	.012	•918	0.63	NYOXGCEPHALUS SP
13	3.22	.910	.928	0.44	PORIFERA
14	2.13	.007	.934	0.57	RAJA SP
15	2.09	.006	.941	0.52	NEPTUNEA HERUS
16	2.00	.006	•947	0.80	CHIONOECETES BAIRDI
17	1.88	.006	° 953	0.39	NEPTUNEA LIKATA
18	1.77	.005	•958	0.17	HIPPEGLUSSUS STENULEPIS
19	1.51	.005	.963	0.15	HALUCTNIHIA SP
20	1.40	- 004	-967	0.78	NEPTUNEA WENTRICUSA
21	1.21	.004	•971	0.00	LUNINAKAUHNIUS PAKHA
22	1-01	.003	•974	0.22	NEFIUNEA FRIBILUFFERSIS
23	0.79	.002	• • 976	0.67	AGUAUS ALIFENSERINUS
24	0.67	- 002	• 776	4.37	TIAS SE Contradacientic Dadna
25	0.00	. 442	- 980	0.07	ELDINARAGOMIUJ FARMA
25	0.66	.002	.982	9.35	BURGUNULLPHALUS CANTE
21	¥• 33	. 902	• 704	U+C J	LILUVED FALLARID
28	0.51	. 442	• 785 007	¥•10	DULIERSA UTAFERA Atuereetuee ed
29	8.49	• 041	• 707	U.92	ATTLALJÍALJ JE Acctatan untoent
50	U-41	• UU1	• 788	U+10 A = 7	UNAUPOLOCIES UDILIO Vointais cuincut
51	U. 57	.001	• 990	0.01	LARUAUCUCICƏ UFILIU Thuchterdate unident
52	0.51	.991	•771	0-01	TULCULE OUTICAL

TOTAL 325.56

+ NUMBER OF HAULS- 79, HEAN DEPTH= 63.9N (RANGE= 31-102M)

Table D-7. Site Group 3

****	*******	*****	******	*****	****
	NEAN	PROP.	CUHUL.	FREQ.	
	CPUE	ŨF	PROP.	ÛF	
	(KG/HA)	CPUE	OF CPUE	OCCURI	R. TAXA
****	*******	*****	******	*****	*********
1	71-05	.537	•537	1.00	THERAGRA CHALCOGRAMMA
2	16-14	-122	. 659	1.00	GADUS MACROCEPHALUS
3	5.49	.041	.701	0.89	CHIONOECETES OPILIO
4	5.13	.039	.739	0.62	CHIONDECETES BAIRDI
5	4.52	.034	.774	0.23	CTENODASCUS CRISPATUS
6	4 • 51	.034	.808	0.97	HIPPOGLOSSOIDES ELASSODON
7	3.89	- 029	.837	0.87	RAJA SP
8	3.64	. 028	.865	0.82	REINHARDTIUS HIPPOGLOSSOIDES
9	2.88	.022	•886	0.55	LYCODES BREVIPES
10	2.20	.017	.903	0.82	NEPTUNEA PRIBILOFFENSIS
11	2.14	.016	•919	0.71	ATHERESTHES SP
15	1.32	.010	•929	0.84	GASTROPOD UNIDENT
13	1.22	.009	.938	0.59	GORGONDCEPHALUS CARYI
14	1-17	. 00 9	•947	0.71	LYCODES PALEARIS
15	0.95	.007	•954	0.62	PAGURIDAE
16	0.54	- 004	.9 59	0.77	STARFISH UNIDENT
17	Q.4 8	.004	• 96 2	0.46	HEMITRIPTERUS BOLINI
18	0-43	.003	• 965	0.24	ANOPLOPOHA FIMBRIA
19	0.43	.003	.969	0.34	HIPPOGLOSSUS STENOLEPIS
20	0.39	.003	• 972	0.50	SEA ANENONE UNIDENT
21	9.35	.003	-974	0.24	NYOXOCEPHALUS SP
22	0.31	.002	•977	0.36	PLEURONECTES QUADRITUBERCULATUS
23	0.30	.002	.979	0.33	OCTOPUS UNIDENT
24	0.30	.002	.981	0.41	NEPTUNEA LYRATA
25	0.26	.002	• 98 3	0.64	ICELUS SP
26	0.22	.002	•985	0.24	LYCODES SP
27	0.20	.002	- 986	0.43	BATHYMASTER SIGNATUS
28	0.17	.001	•987	0.37	LEPIDOPSETTA BILINEATA
29	0.15	.001	• 98 9	0.37	GLYPTOCEPHALUS ZACHIRUS
30	0.14	.001	.990	0.52	HEMILEPIDOTUS JORDANI
31	0.14	.001	.991	0.22	PARALITHODES PLATYPUS

TOTAL 132.28

* NUMBER OF HAULS-122, HEAN DEPTH=122.6N (RANGE= 66-177N)

Table D-8. Site Group 3A

****	********	******	******	*****	**********
	MEAN	PROP.	CUMULA	FREQ.	
	CPUE	OF	PROP	ÛF	
	(KG/HA)	CPUE D	FCPUE	OCCUR	R. TAXA
	******	*****	******	*****	************************
1	65.45	.519	.519	1.00	THERAGRA CHALCOGRAMMA
2	20.65	.164	.683	1.00	GADUS MACROCEPHALUS
3	8.32	.066	.749	0.40	CTENODISCUS CRISPATUS
4	6.18	.049	.798	0.98	REINHARDTIUS HIPPOGLOSSOIDES
5	3.91	.031	.829	0.98	CHIGNDECETES OPILIO
6	3.29	.026	.855	0.83	NEPTUNEA PRIBILOFFENSIS
7	2.42	.019	.874	0.62	LYCODES BREVIPES
8	2.07	.016	.891	0.93	HIPPOGLOSSOIDES ELASSODON
9	2.01	.016	.907	0.90	GASTROPOD UNIDENT
10	1.96	.016	.922	0.90	LYCODES PALEARIS
11	1.79	.014	.936	0.87	RAJA SP
12	1.45	.012	.948	0.83	GORGONOCEPHALUS CARYI
13	0.82	.007	.954	0.97	STARFISH UNIDENT
14	0.73	.006	.960	0.35	CHIONOECETES BAIRDI
15	0.59	.005	.965	0.52	ATHERESTHES SP
16	0.54	. 004	.969	0.52	PAGURIDAE
17	9.52	.004	.973	0.53	PLEURONECTES QUADRITUBERCULATUS
18	0.49	.004	.977	0.75	ICELUS SP
19	0.38	.003	.980	0.40	LYCODES SP
20	0.25	.002	•982	0.52	OCTOPUS UNIDENT
21	0.25	.002	• 984	0.37	PARALITHODES PLATYPUS
22	0.20	.002	•986	0.27	LINANDA ASPERA
23	0-18	.001	.987	0.33	HEMITRIPTERUS BOLINI
24	0.14	.001	.988	0.17	NEPTUNEA HEROS
25	0.14	.001	• 989	0.78	PANDALUS SP
26	0.11	.001	.990	0.50	HEMILEPIDOTUS JORDANI

TOTAL 126.08

* NUMBER DF HAULS- 60, MEAN DEPTH=116.0M (RANGE= 66-174M)

Table D-9. Site Group 3Ai

****			******	*****	**********
	HEAN CPUE	PROP. OF	CUNUL. PROP.	FREQ. OF	
	(KG/HA)	CPUE O	F CP VE	OCC UR	R. TAXA
****	*******	******	*****	*****	***********
1	83.44	.540	• 54 0	1.00	THERAGRA CHALCOGRAMMA
2	21.37	.138	.678	1.00	GADUS HACROCEPHALUS
3	12.18	.079	•757	0.59	CTENODISCUS CRISPATUS
4	8.78	.057	.814	1.00	REINHARDTIUS HIPPOGLOSSOIDES
5	3.67	.024	.837	0.85	NEPTUNEA PRIBILOFFENSIS
6	3.59	.023	.860	0.98	CHIONOECETES OPILIO
7	3.45	.022	.883	0.73	LYCODES BREVIPES
8	2.76	.018	.901	0.95	LYCODES PALEARIS
9	2.67	.017	.918	0.95	HIPPOGLOSSOIDES ELASSODON
10	2.61	.017	.935	0.88	GASTROPOD UNIDENT
11	2.02	.013	.948	0.88	RAJA SP
12	2.01	.013	.961	0.88	GORGOND CEPHALUS CARYI
13	1.00	.006	.967	0.98	STARFISH UNIDENT
14	0.69	.004	.972	0.88	ICELUS SP
15	0.54	.003	.975	0.54	LYCODES SP
16	0.48	.003	.978	0.46	PLEURONECTES QUADRITUBERCULATUS
17	0.40	.003	. 981	0.20	CHIONDECETES BAIRDI
18	0.36	.002	. 983	0.73	OCTOPUS UNIDENT
19	0.32	. 002	- 985	0.37	PAGURIDAE
20	0.30	.002	. 987	0.46	PARALETHODES PLATYPUS
21	0.23	. 001	.989	0.39	ATHERESTHES SP
22	0.20	.001	.990	0.88	PANDALUS SP

TOTAL 154.60

* NUNBER OF HAULS- 41, MEAN DEPTH=118.4M (RANGE= 86-152M)

Table D-10. Site Group 3Aii

****		******	*****			
	MEAN	PROP.	CUMULA	FREQ.	· · · · · · · · · · · · · · · · · · ·	
	CPUE	DF	PROP .	OF		
	(KGZHA)	CPUE O	F CP UE	OCC UR	R. TAXA	
*.***	********	******	******	*****	**********	
1	26.64	-413	-413	1.00	THERAGRA CHALCOGRANNA	
2	19.09	.296	709	1.00	GADUS MACROCEPHALUS	
3	4.62	.072	.780	1.00	CHIONOECETES OPILIO	
4	2.45	.038	.618	0.79	NEPTUNEA PRIBILOFFENSIS	
5	1.46	.023	.841	0.68	CHIONDECETES BAIRDI	
6	1.38	.021	.862	0.79	ATHERESTHES SP	
7	1.29	.020	.882	0.84	RAJA SP	
8	1.00	.016	•898	0.84	PAGURIDAE	
9	0.78	.012	.910	0.89	HIPPOGLOSSOIDES ELASSODON	
10	0.70	.011	.921	0.95	GASTROPOD UNIDENT	
11	0.61	.009	.930	0.68	PLEURONECTES QUADRITUBERCULATUS	
12	0.55	.009	•938	0.95	REINHARDTIUS HIPPOGLOSSOIDES	
13	0.51		. 945 .	0.42	LIMANDA ASPERA	:
14	0.43	. 097	• 953	0.95	STARFISH UNIDENT	
15	0.34	.005	.958	0.58	HENITREPTERUS BOLINI	
16	0.29	.005	.963	0.37	HIPPOGLOSSUS STENOLEPIS	
17	0.25	. 004	.967	0.74	GORGONOCEPHALUS CARYI	
18	0.22	.003	.970	0.29	LYCODES PALEARIS	
19 -	0.21	.003	-974	0.37	LYCODES BREVIPES	
20	0.21	.003	.977	0.68	NEPTUNEA LYRATA	
21	0.14	.002	.979	0.37	NYOXOCEPHALUS SP	
22	0.14	.002	。981	0.16	PARALITHODES PLATYPUS	
23	0-14	.002	• 984	0.11	ANOPLOPONA FIMBRIA	
24	0.12	.002	• 98 5	0.11	OPHIUROID UNIDENT	
25	0.10	.002	• 987	0.47	BATHYMASTER SIGNATUS	
26	0.09	.001	•988	0.47	DASYCOTTUS SETIGER	
27	0.09	.001	•990	9-21	NEPTUNEA HEROS	
28	0.08	.001	.991	0.11	PORIFERA	

TOTAL 64.53

* NUNBER OF HAULS- 19, NEAN DEPTH=110.7N (RANGE= 66-174N)

Table D-11. Site Group 3B

	MEAN	PPNP.	си м ия	FRE Q.	
	CDIE	16	PPNP.	1 NE	
	(KCZHA)	CPHE (IE CPHE	000 UR	R. TAXA
				******	**********************
1	88.24	.581	.581	1.00	THERAGRA CHALCOGRANNA
2	12.53	.083	.654	1.00	GADUS NACROCEPHALUS
. 3	10.65	. 07 0	.734	0.98	CHIONOECETES BAIRDI
4	7.88	.052	.786	1.00	HIPPOGLOSSOIDES ELASSODON
5	6.38	.042	.828	0.89	RAJA SP
6	4.02	. 026	.854	1.00	ATHERESTHES SP
7	3.86	.025	.880	0.51	LYCODES BREVIPES
8	3.39	.022	.902	0.75	CHIONOECETES OPILIO
9	1.50	.010	.912	0.75	PAGURIDAE
10	1.26	.008	.920	0.89	NEPTUNEA PRIBILOFFENSIS
11	1.15	.044	.928	0.36	GORGONOCEPHALUS CARYI
12	1.06	.007	.935	0.62	REINHARDTIUS HIPPOGLOSSOIDES
13	0.94	.006	.941	0.49	ANOPLOPONA FINBRIA
14	0.87	.006	.947	0.06	CTENODISCUS CRISPATUS
15	0.86	.006	.953	0.64	HEMITRIPTERUS BOLINI
Ĩ6	0.83	.005	.958	0.47	HIPPOGLOSSUS STENOLEPIS
17	0.78	.005	.963	0.51	SEA ANENONE UNIDENT
18	0.69	.005	.968	0.79	GASTROPOD UNIDENT
19	0.61	.004	.972	0.17	NYOXOCEPHALUS SP
20	0.48	.003	.975	0.45	NEPTUNEA LYRATA
21	0.41	.003	.978	0.62	BATHYMASTER SIGNATUS
22	0.35	.002	.980	0.49	LYCODES PALEARES
23	0.34	.002	.982	0.74	GLYPTOCEPHALUS ZACHIRUS
24	0.32	.002	- 984	0.42	LEPIDOPSETTA BILINEATA
25	0.29	.002	.986	0.13	OCTOPUS UNIDENT
26	0.27	.002	.958	0.55	STARFISH UNIDENT
27	0.21	.001	.989	0.02	ZOARCEDAE
28	0.20	.001	.991	0.34	THALEICHTHYS PACIFICUS

TOTAL 151.79

+ NUNBER OF HAULS- 53, NEAN DEPTH=131.8N (RANGE= 97-177N)

.